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Abstract

Importance sampling is the old standby method for ob-
taining accurate tail quantiles of a bootstrap distribution
more quickly. A newer method, a variation of control
variates called concomitants, is especially attractive in
larger problems because its efficiency relative to simple
Monte Carlo sampling increases at the rate of \/n, where
n is the sample size.

We show how to combine these complementary meth-
ods. Doing so successfully requires two modifications to
classical importance sampling — a weighted average esti-
mate and a mixture design distribution — and the use of
saddlepoint estimates for the concomitants. These meth-
ods can be programmed to run automatically, and offer
improved moment estimation simultaneous with quan-
tile estimation. The efficiency gains in can be large, e.g.
by a factor of 30, even with small n.

We also obtain promising results by smoothing the
distribution estimates produced by concomitants, with
and without importance sampling.
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1 Introduction

The bootstrap is a general statistical technique, usually
implemented using computer-intensive Monte Carlo sim-
ulation. A variety of methods have been used to reduce
the computational effort, to reduce the number of Monte
Carlo samples required to obtain acceptable accuracy.
Our focus in this article is on two methods which are
effective for estimating tail quantiles of the bootstrap
distribution — concomitants of order statistics and im-
portance sampling — and how they may be combined.
The combination (“CC.IS”) is effective for quantiles and
moments, and may be further improved by smoothing.

We concentrate on the nonparametric bootstrap; see
e.g. Efron and Tibshirani (1993) for an introduction.
The original data is X' = (z1,x2,...,%,), a sample from
an unknown distribution, which may be multivariate.
Let X* = (X7,X5,...,X}) be a “resample” (a boot-
strap sample) of size n chosen with replacement from X.
We wish to estimate something about the distribution of
a random variable T* = T'(X'*). T™* may be a parameter
estimate or a pivotal statistic used for inference.

Let G(a) = P(T* < a). The simple Monte Carlo
implementation of the nonparametric bootstrap begins
by generating a large number B of samples A},b =
1,...,B, of size n with replacement from the origi-
nal data. Compute T} = T(X;) for each such re-
sample. Then the bootstrap distribution estimate is
G(a) = (1/B) Zle I(Ty < a), where I is the usual
indicator function.

In some applications we need to estimate moments of
the distribution of T* for bootstrap estimates of bias or
standard error. In other applications we need to estimate
quantiles of the distribution, particularly in the tails, for
bootstrap confidence intervals. Estimating tail quantiles
accurately is harder than estimating moments — Efron
(1987) finds that reasonable standard error estimates are
obtained with only B = 100, or even 25 resamples, but
that 1000 resamples are needed for accurately estimating
tail quantiles for nonparametric confidence intervals —
so we focus here on estimating quantiles.

The Monte Carlo simulation can be expensive, espe-
cially if the statistic T is hard to compute. A number
of techniques have been used for reducing the compu-
tational effort of bootstrapping, including importance
sampling (Johns, 1988; Davison, 1988), antithetic vari-
ates (Therneau 1983, Hall 1989), control variates (Th-
erneau 1983; Davison, Hinkley, and Schechtman 1986;
Efron 1990), balanced sampling (Davison, Hinkley, and
Schechtman 1986, Gleason 1988, Graham et al. 1990),
concomitants of order statistics (Efron 1990, Do and
Hall 1992, Hesterberg 1995b), quasi-random resampling



(Do and Hall 1991), and post-stratification (Hesterberg
1995b). Various combinations of methods have been in-
vestigated, including concomitants with balanced or an-
tithetic sampling (Do 1992), importance sampling with
balanced sampling (Booth et al. 1993), and importance
sampling with control variates (“CV.IS”) (Hesterberg
1996). The combination CC.IS we discuss here is even
more effective.

The first element of CC.IS is importance sampling,
usually the most effective single method for estimating
bootstrap quantiles, the second is concomitants, which is
particularly useful in large sample problems. We begin in
Section 2 with a discussion of linear approximations for
T, which are needed by both importance sampling and
control variates. We discuss concomitants in Section 3
and importance sampling in Section 4. Certain varia-
tions of both methods are necessary to make the combi-
nation effective, which we discuss in Section 5. We dis-
cuss smoothing the distribution estimates produced by
concomitants, with and without importance sampling,
in Section 6.

2 Linear Approximations

Both concomitants and importance sampling methods
depend in one way or another on an accurate “general-
ized linear” approximation to T'*, which is determined by
a vector L of length n, with elements L; corresponding
to each of the original observations z;, such that

A7) = Zn:Lij‘ =L (1)

where ¢ is a smooth monotone increasing function, P/ =
M;/n, and M; is the number of times z; is included in
X*. The special case where ¢(T*) = T* — T(X) is a
standard linear approximation.

Efron (1982) chooses £ based on an empirical influ-
ence function. We assume that 7 is invariant to per-
mutations of its arguments, so that a resample can be
described by the number of times each original obser-
vation is included in the resample. Then we may ex-
press T as a function of weights on the original obser-
vations, T* = T(P*), where P* = (Pf,...,P*). Let
Py = (1/n,...,1/n) be the vector of weights that cor-
responds to the original sample A. The components of
Einﬂuence are

. d
L;nﬁuence — %T(PO + e(P(l) — Po)) (2)

where P ;) is the vector with 1 in position ¢ and zeroes

elsewhere. (influence

can sometimes be calculated ana-

lytically, or may be approximated using a small value of
e. The positive jackknife corresponds to e = 1/(n + 1).

Figure 1 shows scatterplots of T vs. two versions of
L*, for the studentized mean (one-sample ¢-statistic) for
data ( 9.6, 10.4, 13.0, 15.0, 16.6, 17.2, 17.3, 21.8, 24.0,
26.9, 33.8) from (Graham et al. 1990). In both cases the
relationship is nonlinear. A scatterplot smooth of L* vs
T* may be used to estimate ¢, or vice versa to estimate
y~'. The right panel uses a “tail-specific” linear approx-
imation (Hesterberg 1995b), which gives more accurate
results in the corresponding tail.

Influence function approximations should only be
used if T'(P) is a smooth function of P, which is true for
most common statistics 7. Approximations obtained by
linear regression (Efron 1990, Hesterberg 1995b) may be
used for other statistics.

Let F denote the distribution function for L*. We es-
timate quantiles of L* by reversing the saddlepoint for-
mula of Lugannani and Rice (Daniels 1987, Davison and
Hinkley 1988, Hesterberg 1994). Let

p(1) = @(¢) + o(O)(1/¢ = 1/2),

where ¢ and ® are the standard normal density and dis-
tribution functions,

k(1) = nlog(n Zexp (tL;/n)) (3)

7j=1
is the cumulant generating function of L*, ( =
sgn(7)y/2(tk' (1) — k(7)), and z = 74/k"(7). Then

F~(a) = £'(1), where 7 is the (numerical) solution of
p(1) = a.

3 Concomitants

Davison and Hinkley (1988) use the saddlepoint for lin-
ear bootstrap problems; here we essentially use the sad-
dlepoint for the linear part of a statistic, and Monte
Carlo simulation for the nonlinear part.

For simplicity of notation, we sort the resamples by
the values of L*, so that L; is the b’th order statistic of
the linear approximation. The concomitants estimate of
the bootstrap distribution is

B
=(1/B)Y_I(Tf < a) (4)
b=1

where

T =4 (L) + Ty — o~ (L}) (5)

and where L] is an estimate of the (b—0.5)/B quantile of
the distribution of L*. A simple variation uses ¢(z) = x.
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Figure 1: Central and Right Linear Approximations. Studentized mean T* vs. linear approximation L*. The same
1500 resamples are shown in both panels, with the same values of T* but two different linear approximations — the
approximation in the right panel is customized for the right tail. For display purposes the randomly generated points

have heavier tails than under simple bootstrap sampling.

Efron (1990) estimates 1! using a cubic regression of
T* against L*, and Hesterberg (1995b) uses smoothing
and other variations.

We interpret concomitants as decomposing 7T} into its
estimated expected value given Ly,

PR, (6)

and the residual

(L), (7)

then replacing the random observed order statistic Ly in

Ry =Ty —

(6) with a value near the center of its distribution, LZ.

Efron (1990) lets L be the b’th normal score &~ ((b—
0.5)/B), iteratively transformed using cubic Cornish-
Fisher transformations so that the first four sample mo-
ments match the theoretical moments of L*, but sug-
gests that using the saddlepoint would be more accurate.
We use the saddlepoint, with L} = F~'((b — 0.5)/B).
Rather that evaluate each quantile estimate individu-
ally, we evaluate the parametric equations (p(7), &'(7))
for a number of values of 7 to obtain points on the curve
(F(z),z), and smoothly interpolate, adding additional
values of 7 if needed.

Using the saddlepoint is especially important in CC.IS
because the weighted sample moments needed by the
Cornish-Fisher method can be extremely variable when
obtained using importance sampling.

4 Importance Sampling
The usual derivation of importance sampling (Hammer-
sley and Hanscomb 1964) is designed for “Monte Carlo

integration” — estimating an integral, or equivalently the
expected value of a random variable. The integral may

be rewritten
)= [ o

. / QX*TX*g(X*):Eg[Y(X*n ®)

5

where Y(X*) = Q(&X*)f(X*)/g(X*). In the bootstrap
context, f is the discrete distribution corresponding to a
simple random sample with replacement from the orig-
inal data, and g is a “design distribution” which also
samples in some manner from the original data. The
classical “integration” estimate based on B resamples



from g is

L~ QI ()

ﬂint = ? = =

This corresponds to a weighted sum, with weight
(1/B)W,

on @y, where Wy = f(X])/g(Xy). The weights do
not add to 1, which can cause a number of problems.
Two alternate estimates (Hesterberg 1988, 1995a) for
which the weights do add to 1 are the “ratio estimate”
which uses weights W,/ Zszl Wi, and the “regression
estimate” which uses weights

Vs = (1/BYWy(1 + (W, — W) (10)

where ¢ = (1 — W)/((1/B) X2, (Wy — W)?). In the
bootstrap context the weights are used to create a
weighted empirical distribution for 7%, e.g. G(a) =
St V(T < a).

4.1 Design Distributions

We use importance sampling design distributions of the
form

g(X") = 0.2f(X7) + 0491 (X7) + 0.4g2(X7),

where g; and g2 are concentrated on the left and right
tails of the bootstrap distribution. In particular, g indi-
cates sampling with unequal probabilities P(X; = z;) =
cr exp(Tr/nLy);) for k= 1,2, where 7 <0 < 73, the ¢y
are normalizing constants, and L) are vectors that de-
fine generalized linear approximations. This is a combi-
nation of exponential tilting (Johns 1988, Davison 1988)
with defensive mixture distributions (Hesterberg 1988,
1995a). This design has 20% of the bootstrap samples
are chosen by simple random bootstrap sampling and
40% each from distributions biased toward the left and
right tails. The weight

Wy=(02 + 0.4exp(TlLE‘1)b — k(1) (m1))
+ 04 exp(TzLE})b — K(2) (Tz)))fl

is independent of which distribution (f, g1, or g») was
used to generate resample b, and is bounded above by 5.

We use tail-specific L) here, but a single £ can be
used. We choose the tilting parameters 73, so that the
expected value of Lf,, under g is at approximately o
quantile under f, where «a is 0.025 and 0.975 for the left
(k = 1) and right (k = 2) tails, respectively; we find 7 by
solving the saddlepoint equation p(7) = «; the solution
need not be very accurate.

5 Combining Concomitants and
Importance Sampling

In concomitants without importance sampling the con-
comitants use quantiles for L* which are evenly spaced
on the probability scale, LI = F~1((b — 0.5)/B) for
b=1,...,B. With importance sampling they must be
unequally spaced to match the weights, say V;, (10). Af-
ter sorting the bootstrap samples by L*, we let

b—1
Ly =F' O Vi+V/2)
=1

for b = 1,...,B. These are used in (5) to obtain a
weighted distribution estimate

B

Gla) =Y VI(T] < a) (11)

b=1

which can be used both for quantile and moment esti-
mation.

It is very important that the saddlepoint variation of
concomitants be used instead of the cumulant transfor-
mation variation, or that robust importance sampling
methods (a defensive mixture design and the ratio or re-
gression estimate) be used; we use both the saddlepoint
variation and robust methods. The reason is that if the
importance sampling design uses only simple exponential
tilting biased toward one tail, then values from the other
tail are infrequently observed but receive large weights
when observed, the sum of the weights can differ greatly
from 1, and weighted moment estimates used by the cu-
mulant transformation variation are highly variable.

The use of tail-specific linear approximations intro-
duces a complication. The importance sampling weights
are determined by the design distribution actually used,
which is based on one or more vectors L(;). Now con-
comitants is also based on an £ (via L*) which can but
need not match any used in importance sampling; we
may even use different values of £ to obtain different
concomitants distribution estimates. Our practice when
estimating quantiles is use the L) which gives most ac-
curate results for each quantile, i.e. to do concomitants
based on a tail-specific linear approximations when es-
timating a quantile in the tail. However for estimating
moments we use a single central L.

Results for importance sampling, concomitants,
CC.IS, and other variance reduction methods are shown
in in Table 1, for the Studentized mean example in Fig-
ure 1. Numbers in the table are the estimated efficiency
for each method, relative to simple Monte Carlo boot-
strap sampling. CC.IS more accurate for estimating tail



Table 1: Variance Reduction

Moments Quantiles
Method mean std. dev. | .025 .5 .975
Antithetic 6.8 0.72 1.0 3.5 1.1
Balanced 7.8 0.74 1.1 2.9 1.2
Importance 2.1 22.3 14.2  0.50 9.1
Control Var. 15.1 2.3 1.4 80.2 1.4
Concomitants 20.2 4.2 5.8 63.0 9.7
CV.IS 33.1 38.5 30.0 86 25.0
CC.IS 23.6 10.9 30.0 12.1 34.0
CC+Smooth 20.2 4.3 11.2 97.0 234
CC.IS4+Smooth 19.8 3.9 41.4 38.7 57.1

The values in the table are the estimated variance using simple Monte Carlo bootstrap sampling divided by the estimated
variance using each variance reduction techniques, for the bootstrap distribution of the Studentized mean for the same data
used in Figure 1. Numbers are based on 2000 bootstrap experiments with B = 200 bootstrap samples in each. Most standard
errors are between 4% and 6% of the entry. A value of 30 in the table indicates that simple Monte Carlo requires roughly 30
times as many bootstrap samples for comparable accuracy, or the method needs roughly 1/30 as many samples for comparable
accuracy (except that some methods suffer small-sample effects if B is small).

Estimates involving importance sampling use the regression method and the 20%/40%/40% mixture design described in the
text. The balanced method used here is not the usual biased method, but a variation in which observations in a single
bootstrap sample are independent. The control variate estimates use different sets of control variates for estimating moments

and quantiles.

quantiles than any other method, with variance reduc-
tion factors of 30 or better, though CV.IS is close.

The combination CC.IS has several advantages over
CV.IS. First, it provides both quantile and moment es-
timates simultaneously. In contrast, Hesterberg (1996)
found that the best results for CV.IS were obtained us-
ing different sets of control variates for moments than
for quantiles. Second, it appears to be more accurate
for quantiles. The asymptotic variance of concomitants
quantile estimates (Hesterberg 1995b) is the same as that
of control variates if both are optimally tuned, i.e. the
optimal (nonlinear) control variate is used and the cor-
rect ¢ is used; in practice discrete control variates are
used, resulting in a loss of efficiency by about a factor of
V/2 if the conditional distribution of T* given L* is ap-
proximately normal with small variance. Hesterberg and
Nelson (1996) discuss optimal control variates and dis-
crete approximations. Estimating ¢ is also easier than
estimating the optimal control variate, and the optimal
control variate is different for every quantile.

There are also disadvantages for CC.IS. First, it re-
quires computation of n saddlepoint quantile estimates
of L*, while CV.IS requires only a small number like 1,
2, or 3. Second, the method appears to be less accu-
rate for moments than is CV.IS — and in this context
CV.IS requires no saddlepoint estimates. Third, the best
results for concomitants are obtained only if the nonlin-
ear transformation ¢ is estimated. Fourth, the use of

tail-specific L* complicates matters. Fifth, the values
TJ differ from the corresponding T}, so that this proce-
dure is not suitable for discrete distributions (but Hall
(1986) shows that bootstrap distributions are practically
continuous under fairly general conditions).

Either combination does substantially better than
using the component methods in isolation, and both
are substantially better than methods such as balanced
bootstrap sampling or antithetic variates.

Results are not as good for all statistics and datasets
as shown in Table 1. The extremely small conditional
variance of T™* given L* apparent in Figure 1 does not
occur in all problems and is particularly favorable to
control variates and (to a lesser extent) to concomi-
tants. This is the reason for the exceptional variance
reductions for estimating the median of the bootstrap
distribution using either control variates or concomi-
tants, without importance sampling. On the other hand,
the sample size here is small, and both control variates
and concomitants performance becomes better as n in-
creases, with asymptotic variances for quantiles of order
O(n~'2B~1); we have obtained some excellent results in
large sample problems. And the gains offered by smooth-
ing, discussed next, should be even more valuable for
other datasets where heteroskedasticity is less extreme
than in Figure 1.



6 Smoothing Concomitants

Finally, we consider the effect of smoothing concomi-
tants distribution estimates. The empirical results in
Table 1 indicate that the method of smoothing we used
is effective for estimating quantiles. We conjecture that
smoothing distributions with concomitants is much more
effective than without; we return to this point below, but
first motivate and describe our smoothing method.
We may rewrite (4) as

B
=(1/B))_P(
b=1

where (5) corresponds to estimating each individual
probability using an indicator function:

+Rb§a)

PN (L) + Ry < a) =167 (L)) + R} <a). (12)
It may be possible to improve on this estimate by ei-
ther vertical or horizontal smoothing of (12); these cor-
respond to smoothing the residuals (7) and predicted
values (6), respectively.

The idea in vertical smoothing is to continue to fix
L} at Ll as in (12), but to replace the indicator function
with an estimate of the probability based on the dis-
tribution of random R;, the residual for the b’th order
statistic Ly. Results in Table 1 are obtained by a simple
procedure in which the distribution of R* is estimated
by the local nearest-neighbor empirical distribution,

3
Py=7"" 3" I1(07N(L)) + Ry, < a),

i=—3

with adjustments for extreme values of b. We use a lo-
cal rather than global estimate because the distribution
of R* may depend on L*, e.g. Figure 1 shows definite
heteroskedasticity.

In horizontal smoothing, we keep the residual R}
fixed, and replace the observed order statistic L; not
by a single value Ll, but rather by an estimate of the
distribution for the b’th random order statistic, B =
ﬁ(zp_l(Lzb)) + Ry < a), where now Lf, is considered
random and R; fixed.

Results (Table 1) are promising, with smoothing im-
proving quantil estimates. This is still work in progress.
We have not implemented horizontal smoothing, or com-
bined it with vertical smoothing. Other ways to estimate
the local distribution of R* may be more effective, or we
might achieve essentially the same result more simply
by kernel smoothing the final distribution estimate. For
smoothing the importance sampling concomitants com-
bination we ignored the importance sampling weights

associated with the local neighbors, which may explain
the disappointing performance for estimating moments.

We have not calculated the bias caused by smooth-
ing, but have reason to believe it is small; this relates to
our conjecture that smoothing with concomitants can be
particularly effective. For the sake of argument we focus
on kernel smoothing. Smoothing quantile estimates in-
volves a tradeoff between bias and variance; the greater
the amount of smoothing the smaller the variance, but
the greater the bias. Both bias and variance depend on
the ratio between the standard deviation (s.d.) of the
kernel and the s.d. of the distribution being smoothed.
We conjecture that here the bias is governed by the ratio
of the kernel s.d. to the s.d. of R*, and the variance by
the ratio of the kernel s.d. to the s.d. of T; this is favor-
able because the s.d. of the residuals R* is much smaller
than than of T*. This would allow a greater degree of
variance reduction by smoothing before the increase in
bias negates the gains.

Simulation Detalils

Simulations are run in S-Plus (Becker et al. 1988; Statis-
tical Sciences, 1991) and C, using the Super Duper ran-
dom number generator of Marsaglia. All methods are
evaluated on 2000 bootstrap experiments of B = 200
samples each. Common random numbers are used, with
the original observations sorted according to the values
of ‘Ccentral-

Summary

We obtain accurate estimates of both quantiles and mo-
ments using a combination of importance sampling and
concomitants of order statistics. This combination is
more accurate than the combination of importance sam-
pling and control variates, and substantially more accu-
rate than other available variance reduction procedures.
Promising work in progress involves smoothing distri-
bution estimates from concomitants, with and without
importance sampling.
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