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Abstract

Importance sampling is the old standby method for ob�
taining accurate tail quantiles of a bootstrap distribution
more quickly� A newer method� a variation of control
variates called concomitants� is especially attractive in
larger problems because its e�ciency relative to simple
Monte Carlo sampling increases at the rate of

p
n� where

n is the sample size�
We show how to combine these complementary meth�

ods� Doing so successfully requires two modi�cations to
classical importance sampling � a weighted average esti�
mate and a mixture design distribution � and the use of
saddlepoint estimates for the concomitants� These meth�
ods can be programmed to run automatically� and o�er
improved moment estimation simultaneous with quan�
tile estimation� The e�ciency gains in can be large� e�g�
by a factor of ��� even with small n�

We also obtain promising results by smoothing the
distribution estimates produced by concomitants� with
and without importance sampling�

Keywords

Variance reduction� importance sampling� concomitants�
bootstrap� saddlepoint�

� Introduction

The bootstrap is a general statistical technique� usually
implemented using computer�intensive Monte Carlo sim�
ulation� A variety of methods have been used to reduce
the computational e�ort� to reduce the number of Monte
Carlo samples required to obtain acceptable accuracy�
Our focus in this article is on two methods which are
e�ective for estimating tail quantiles of the bootstrap
distribution � concomitants of order statistics and im�
portance sampling � and how they may be combined�
The combination 	
CC�IS�� is e�ective for quantiles and
moments� and may be further improved by smoothing�

We concentrate on the nonparametric bootstrap see
e�g� Efron and Tibshirani 	����� for an introduction�
The original data is X � 	x�� x�� � � � � xn�� a sample from
an unknown distribution� which may be multivariate�
Let X � � 	X�

� � X
�
� � � � � � X

�
n� be a 
resample� 	a boot�

strap sample� of size n chosen with replacement from X �
We wish to estimate something about the distribution of
a random variable T � � T 	X ��� T � may be a parameter
estimate or a pivotal statistic used for inference�

Let G	a� � P 	T � � a�� The simple Monte Carlo
implementation of the nonparametric bootstrap begins
by generating a large number B of samples X �

b � b �
�� � � � � B� of size n with replacement from the origi�
nal data� Compute T �

b � T 	X �
b � for each such re�

sample� Then the bootstrap distribution estimate is
�G	a� � 	��B�

PB
b�� I	T

�
b � a�� where I is the usual

indicator function�

In some applications we need to estimate moments of
the distribution of T � for bootstrap estimates of bias or
standard error� In other applications we need to estimate
quantiles of the distribution� particularly in the tails� for
bootstrap con�dence intervals� Estimating tail quantiles
accurately is harder than estimating moments � Efron
	����� �nds that reasonable standard error estimates are
obtained with only B � ���� or even �� resamples� but
that ���� resamples are needed for accurately estimating
tail quantiles for nonparametric con�dence intervals �
so we focus here on estimating quantiles�

The Monte Carlo simulation can be expensive� espe�
cially if the statistic T is hard to compute� A number
of techniques have been used for reducing the compu�
tational e�ort of bootstrapping� including importance
sampling 	Johns� ���� Davison� ������ antithetic vari�
ates 	Therneau ����� Hall ������ control variates 	Th�
erneau ���� Davison� Hinkley� and Schechtman ����
Efron ������ balanced sampling 	Davison� Hinkley� and
Schechtman ����� Gleason ����� Graham et al� ������
concomitants of order statistics 	Efron ����� Do and
Hall ����� Hesterberg ����b�� quasi�random resampling



	Do and Hall ������ and post�strati�cation 	Hesterberg
����b�� Various combinations of methods have been in�
vestigated� including concomitants with balanced or an�
tithetic sampling 	Do ������ importance sampling with
balanced sampling 	Booth et al� ������ and importance
sampling with control variates 	
CV�IS�� 	Hesterberg
������ The combination CC�IS we discuss here is even
more e�ective�

The �rst element of CC�IS is importance sampling�
usually the most e�ective single method for estimating
bootstrap quantiles� the second is concomitants� which is
particularly useful in large sample problems� We begin in
Section � with a discussion of linear approximations for
T �� which are needed by both importance sampling and
control variates� We discuss concomitants in Section �
and importance sampling in Section �� Certain varia�
tions of both methods are necessary to make the combi�
nation e�ective� which we discuss in Section �� We dis�
cuss smoothing the distribution estimates produced by
concomitants� with and without importance sampling�
in Section ��

� Linear Approximations

Both concomitants and importance sampling methods
depend in one way or another on an accurate 
general�
ized linear� approximation to T �� which is determined by
a vector L of length n� with elements Lj corresponding
to each of the original observations xj � such that

�	T 	X ���
�
�

nX
j��

LjP
�
j � L� 	��

where � is a smooth monotone increasing function� P �
j �

Mj�n� and Mj is the number of times xj is included in
X �� The special case where �	T �� � T � � T 	X � is a
standard linear approximation�

Efron 	����� chooses L based on an empirical in�u�
ence function� We assume that T is invariant to per�
mutations of its arguments� so that a resample can be
described by the number of times each original obser�
vation is included in the resample� Then we may ex�
press T as a function of weights on the original obser�
vations� T � � T 	P��� where P

� � 	P �
� � � � � � P

�
n�� Let

P� � 	��n� � � � � ��n� be the vector of weights that cor�
responds to the original sample X � The components of
Lin�uence are

Lin�uence
i �

d

d�
T 	P� � �	P�i� �P��� 	��

where P�i� is the vector with � in position i and zeroes

elsewhere� Lin�uence can sometimes be calculated ana�

lytically� or may be approximated using a small value of
�� The positive jackknife corresponds to � � ��	n� ���

Figure � shows scatterplots of T � vs� two versions of
L�� for the studentized mean 	one�sample t�statistic� for
data 	 ���� ����� ����� ����� ����� ����� ����� ����� �����
����� ����� from 	Graham et al� ������ In both cases the
relationship is nonlinear� A scatterplot smooth of L� vs
T � may be used to estimate �� or vice versa to estimate
���� The right panel uses a 
tail�speci�c� linear approx�
imation 	Hesterberg ����b�� which gives more accurate
results in the corresponding tail�

In�uence function approximations should only be
used if T 	P� is a smooth function of P� which is true for
most common statistics T � Approximations obtained by
linear regression 	Efron ����� Hesterberg ����b� may be
used for other statistics�

Let F denote the distribution function for L�� We es�
timate quantiles of L� by reversing the saddlepoint for�
mula of Lugannani and Rice 	Daniels ����� Davison and
Hinkley ����� Hesterberg ������ Let

p	�� � �	�� � �	��	��� � ���z��

where � and � are the standard normal density and dis�
tribution functions�

�	�� � n log	n��
nX

j��

exp	�Lj�n�� 	��

is the cumulant generating function of L�� � �
sgn	��

p
�	���	�� � �	���� and z � �

p
���	��� Then

�F��		� � ��	��� where � is the 	numerical� solution of
p	�� � 	�

� Concomitants

Davison and Hinkley 	����� use the saddlepoint for lin�
ear bootstrap problems here we essentially use the sad�
dlepoint for the linear part of a statistic� and Monte
Carlo simulation for the nonlinear part�

For simplicity of notation� we sort the resamples by
the values of L�� so that L�

b is the b�th order statistic of
the linear approximation� The concomitants estimate of
the bootstrap distribution is

�G	a� � 	��B�

BX
b��

I	T y
b � a� 	��

where
T y
b � ����	Ly

b� � T �
b � ����	L�

b� 	��

and where Ly
b is an estimate of the 	b������B quantile of

the distribution of L�� A simple variation uses �	x� � x�
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Figure �� Central and Right Linear Approximations� Studentized mean T � vs� linear approximation L�� The same
���� resamples are shown in both panels� with the same values of T � but two di�erent linear approximations � the
approximation in the right panel is customized for the right tail� For display purposes the randomly generated points
have heavier tails than under simple bootstrap sampling�

Efron 	����� estimates ��� using a cubic regression of
T � against L�� and Hesterberg 	����b� uses smoothing
and other variations�

We interpret concomitants as decomposing T �
b into its

estimated expected value given L�
b �

����	L�
b�� 	��

and the residual

R�
b � T �

b � ����	L�
b�� 	��

then replacing the random observed order statistic L�
b in

	�� with a value near the center of its distribution� Ly
b�

Efron 	����� lets Ly
b be the b�th normal score ���		b�

�����B�� iteratively transformed using cubic Cornish�
Fisher transformations so that the �rst four sample mo�
ments match the theoretical moments of L�� but sug�
gests that using the saddlepoint would be more accurate�
We use the saddlepoint� with Ly

b � �F��		b � �����B��
Rather that evaluate each quantile estimate individu�
ally� we evaluate the parametric equations 	p	��� ��	���
for a number of values of � to obtain points on the curve
	 �F 	x�� x�� and smoothly interpolate� adding additional
values of � if needed�

Using the saddlepoint is especially important in CC�IS
because the weighted sample moments needed by the
Cornish�Fisher method can be extremely variable when
obtained using importance sampling�

� Importance Sampling

The usual derivation of importance sampling 	Hammer�
sley and Hanscomb ����� is designed for 
Monte Carlo
integration�� estimating an integral� or equivalently the
expected value of a random variable� The integral may
be rewritten


 � Ef �Q	X ��� �

Z
Q	X ��f	X ��

�

Z
Q	X ��f	X ��

g	X ��
g	X �� � Eg �Y 	X ��� 	��

where Y 	X �� � Q	X ��f	X ���g	X ��� In the bootstrap
context f is the discrete distribution corresponding to a
simple random sample with replacement from the orig�
inal data� and g is a 
design distribution� which also
samples in some manner from the original data� The
classical 
integration� estimate based on B resamples



from g is

�
int � Y �
�

B

BX
b��

Q	X �
b �f	X �

b �

g	X �
b �

� 	��

This corresponds to a weighted sum� with weight

	��B�Wb

on Qb� where Wb � f	X �
b ��g	X �

b �� The weights do
not add to �� which can cause a number of problems�
Two alternate estimates 	Hesterberg ����� ����a� for
which the weights do add to � are the 
ratio estimate�
which uses weights Wb�

PB
k��Wk� and the 
regression

estimate� which uses weights

Vb � 	��B�Wb	� � c	Wb �W �� 	���

where c � 	� � W ��		��B�
PB

b��	Wb � W ���� In the
bootstrap context the weights are used to create a
weighted empirical distribution for T �� e�g� �G	a� �PB

b�� VbI	T
�
b � a��

��� Design Distributions

We use importance sampling design distributions of the
form

g	X �� � ���f	X �� � ���g�	X �� � ���g�	X ���

where g� and g� are concentrated on the left and right
tails of the bootstrap distribution� In particular� gk indi�
cates sampling with unequal probabilities P 	Xi � xj� �
ck exp	�k�nL�k�j� for k � �� �� where �� � � � ��� the ck
are normalizing constants� and L�k� are vectors that de�
�ne generalized linear approximations� This is a combi�
nation of exponential tilting 	Johns ����� Davison �����
with defensive mixture distributions 	Hesterberg �����
����a�� This design has ��� of the bootstrap samples
are chosen by simple random bootstrap sampling and
��� each from distributions biased toward the left and
right tails� The weight

Wb � 	��� � ��� exp	��L
�
���b � ����	����

� ��� exp	��L
�
���b � ����	�����

��

is independent of which distribution 	f � g�� or g�� was
used to generate resample b� and is bounded above by ��

We use tail�speci�c L�k� here� but a single L can be
used� We choose the tilting parameters �k so that the
expected value of L�

�k� under gk is at approximately 	
quantile under f � where 	 is ����� and ����� for the left
	k � �� and right 	k � �� tails� respectively we �nd � by
solving the saddlepoint equation p	�� � 	 the solution
need not be very accurate�

� Combining Concomitants and

Importance Sampling

In concomitants without importance sampling the con�
comitants use quantiles for L� which are evenly spaced
on the probability scale� Ly

b � �F��		b � �����B� for
b � �� � � � � B� With importance sampling they must be
unequally spaced to match the weights� say Vb 	���� Af�
ter sorting the bootstrap samples by L�� we let

Ly
b �

�F��	
b��X
i��

Vi � Vb���

for b � �� � � � � B� These are used in 	�� to obtain a
weighted distribution estimate

�G	a� �
BX
b��

VbI	T
y
b � a� 	���

which can be used both for quantile and moment esti�
mation�

It is very important that the saddlepoint variation of
concomitants be used instead of the cumulant transfor�
mation variation� or that robust importance sampling
methods 	a defensive mixture design and the ratio or re�
gression estimate� be used we use both the saddlepoint
variation and robust methods� The reason is that if the
importance sampling design uses only simple exponential
tilting biased toward one tail� then values from the other
tail are infrequently observed but receive large weights
when observed� the sum of the weights can di�er greatly
from �� and weighted moment estimates used by the cu�
mulant transformation variation are highly variable�

The use of tail�speci�c linear approximations intro�
duces a complication� The importance sampling weights
are determined by the design distribution actually used�
which is based on one or more vectors L�k�� Now con�
comitants is also based on an L 	via L�� which can but
need not match any used in importance sampling we
may even use di�erent values of L to obtain di�erent
concomitants distribution estimates� Our practice when
estimating quantiles is use the L�k� which gives most ac�
curate results for each quantile� i�e� to do concomitants
based on a tail�speci�c linear approximations when es�
timating a quantile in the tail� However for estimating
moments we use a single central L�

Results for importance sampling� concomitants�
CC�IS� and other variance reduction methods are shown
in in Table �� for the Studentized mean example in Fig�
ure �� Numbers in the table are the estimated e�ciency
for each method� relative to simple Monte Carlo boot�
strap sampling� CC�IS more accurate for estimating tail



Table �� Variance Reduction

Moments Quantiles
Method mean std� dev� ���� �� ����

Antithetic ��� ���� ��� 	�� ���
Balanced ��� ���
 ��� ��� ���
Importance ��� ���	 �
�� ���� ���
Control Var� ���� ��	 ��
 ���� ��

Concomitants ���� 
�� ��� �	�� ���
CV�IS 		�� 	��� 	��� ��� ����
CC�IS �	�� ���� 	��� ���� 	
��
CC�Smooth ���� 
�	 ���� ���� �	�

CC�IS�Smooth ���� 	�� 
��
 	��� ����

The values in the table are the estimated variance using simple Monte Carlo bootstrap sampling divided by the estimated
variance using each variance reduction techniques� for the bootstrap distribution of the Studentized mean for the same data
used in Figure �� Numbers are based on ���� bootstrap experiments with B  ��� bootstrap samples in each� Most standard
errors are between 
� and �� of the entry� A value of 	� in the table indicates that simple Monte Carlo requires roughly 	�
times as many bootstrap samples for comparable accuracy� or the method needs roughly ��	� as many samples for comparable
accuracy �except that some methods su�er small�sample e�ects if B is small��
Estimates involving importance sampling use the regression method and the ����
���
�� mixture design described in the
text� The balanced method used here is not the usual biased method� but a variation in which observations in a single
bootstrap sample are independent� The control variate estimates use di�erent sets of control variates for estimating moments
and quantiles�

quantiles than any other method� with variance reduc�
tion factors of �� or better� though CV�IS is close�

The combination CC�IS has several advantages over
CV�IS� First� it provides both quantile and moment es�
timates simultaneously� In contrast� Hesterberg 	�����
found that the best results for CV�IS were obtained us�
ing di�erent sets of control variates for moments than
for quantiles� Second� it appears to be more accurate
for quantiles� The asymptotic variance of concomitants
quantile estimates 	Hesterberg ����b� is the same as that
of control variates if both are optimally tuned� i�e� the
optimal 	nonlinear� control variate is used and the cor�
rect � is used in practice discrete control variates are
used� resulting in a loss of e�ciency by about a factor ofp
� if the conditional distribution of T � given L� is ap�

proximately normal with small variance� Hesterberg and
Nelson 	����� discuss optimal control variates and dis�
crete approximations� Estimating � is also easier than
estimating the optimal control variate� and the optimal
control variate is di�erent for every quantile�

There are also disadvantages for CC�IS� First� it re�
quires computation of n saddlepoint quantile estimates
of L�� while CV�IS requires only a small number like ��
�� or �� Second� the method appears to be less accu�
rate for moments than is CV�IS � and in this context
CV�IS requires no saddlepoint estimates� Third� the best
results for concomitants are obtained only if the nonlin�
ear transformation � is estimated� Fourth� the use of

tail�speci�c L� complicates matters� Fifth� the values
T y
b di�er from the corresponding T �

b � so that this proce�
dure is not suitable for discrete distributions 	but Hall
	����� shows that bootstrap distributions are practically
continuous under fairly general conditions��

Either combination does substantially better than
using the component methods in isolation� and both
are substantially better than methods such as balanced
bootstrap sampling or antithetic variates�

Results are not as good for all statistics and datasets
as shown in Table �� The extremely small conditional
variance of T � given L� apparent in Figure � does not
occur in all problems and is particularly favorable to
control variates and 	to a lesser extent� to concomi�
tants� This is the reason for the exceptional variance
reductions for estimating the median of the bootstrap
distribution using either control variates or concomi�
tants� without importance sampling� On the other hand�
the sample size here is small� and both control variates
and concomitants performance becomes better as n in�
creases� with asymptotic variances for quantiles of order
O	n����B��� we have obtained some excellent results in
large sample problems� And the gains o�ered by smooth�
ing� discussed next� should be even more valuable for
other datasets where heteroskedasticity is less extreme
than in Figure ��



� Smoothing Concomitants

Finally� we consider the e�ect of smoothing concomi�
tants distribution estimates� The empirical results in
Table � indicate that the method of smoothing we used
is e�ective for estimating quantiles� We conjecture that
smoothing distributions with concomitants is much more
e�ective than without we return to this point below� but
�rst motivate and describe our smoothing method�

We may rewrite 	�� as

�G	a� � 	��B�
BX
b��

�P 	 ����	L�
b� �R�

b � a��

where 	�� corresponds to estimating each individual
probability using an indicator function�

�P 	 ����	L�
b� �R�

b � a� � I	 ����	Ly
b� �R�

b � a�� 	���

It may be possible to improve on this estimate by ei�
ther vertical or horizontal smoothing of 	��� these cor�
respond to smoothing the residuals 	�� and predicted
values 	��� respectively�

The idea in vertical smoothing is to continue to �x
L�
b at Ly

b as in 	���� but to replace the indicator function
with an estimate of the probability based on the dis�
tribution of random R�

b � the residual for the b�th order
statistic L�

b � Results in Table � are obtained by a simple
procedure in which the distribution of R� is estimated
by the local nearest�neighbor empirical distribution�

�Pb � ���
�X

j���

I	 ����	Ly

b� �R�
b�j � a��

with adjustments for extreme values of b� We use a lo�
cal rather than global estimate because the distribution
of R� may depend on L�� e�g� Figure � shows de�nite
heteroskedasticity�

In horizontal smoothing� we keep the residual R�
b

�xed� and replace the observed order statistic L�
b not

by a single value Ly
b� but rather by an estimate of the

distribution for the b�th random order statistic� �Pb �
�P 	 ����	L�

�b�� � R�
b � a�� where now L�

�b� is considered
random and R�

b �xed�
Results 	Table �� are promising� with smoothing im�

proving quantil estimates� This is still work in progress�
We have not implemented horizontal smoothing� or com�
bined it with vertical smoothing� Other ways to estimate
the local distribution of R� may be more e�ective� or we
might achieve essentially the same result more simply
by kernel smoothing the �nal distribution estimate� For
smoothing the importance sampling concomitants com�
bination we ignored the importance sampling weights

associated with the local neighbors� which may explain
the disappointing performance for estimating moments�

We have not calculated the bias caused by smooth�
ing� but have reason to believe it is small this relates to
our conjecture that smoothing with concomitants can be
particularly e�ective� For the sake of argument we focus
on kernel smoothing� Smoothing quantile estimates in�
volves a tradeo� between bias and variance the greater
the amount of smoothing the smaller the variance� but
the greater the bias� Both bias and variance depend on
the ratio between the standard deviation 	s�d�� of the
kernel and the s�d� of the distribution being smoothed�
We conjecture that here the bias is governed by the ratio
of the kernel s�d� to the s�d� of R�� and the variance by
the ratio of the kernel s�d� to the s�d� of T � this is favor�
able because the s�d� of the residuals R� is much smaller
than than of T �� This would allow a greater degree of
variance reduction by smoothing before the increase in
bias negates the gains�

Simulation Details

Simulations are run in S�Plus 	Becker et al� ���� Statis�
tical Sciences� ����� and C� using the Super Duper ran�
dom number generator of Marsaglia� All methods are
evaluated on ���� bootstrap experiments of B � ���
samples each� Common random numbers are used� with
the original observations sorted according to the values
of Lcentral�

Summary

We obtain accurate estimates of both quantiles and mo�
ments using a combination of importance sampling and
concomitants of order statistics� This combination is
more accurate than the combination of importance sam�
pling and control variates� and substantially more accu�
rate than other available variance reduction procedures�
Promising work in progress involves smoothing distri�
bution estimates from concomitants� with and without
importance sampling�
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