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Abstract

The fundamental bootstrap assumption is that the
bootstrap approximates reality; that the sampling
distribution of a statistic under the empirical dis-
tribution F' approximates the sampling distribution
under the true (unknown) distribution.

A natural way to test this is to investigate how
the bootstrap distribution varies when F' is re-
placed by other distributions. Iterated bootstrap-
ping, jackknife-after-bootstrap (JAB), and boot-
strap tilting diagnostics all do this, but tilting lets
one focus on a key questions — how the sampling
distribution depends on a parameter of interest —
without the noise of the other procedures.

Both tilting and iterated bootstrapping may be
used for calibration, and in some cases giving confi-
dence intervals or hypothesis tests that are an or-
der of magnitude more accurate than the uncali-
brated versions. But whereas iterated bootstrapping
is computationally much more expensive than ordi-
nary bootstrapping, bootstrap tilting is less expen-
sive — 17 to 37 times less expensive than common
bootstrap confidence intervals.
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1 Introduction

The fundamental bootstrap assumption is that the
sampling distribution of a statistic under the un-
known true distribution F' may be approximated by
the sampling distribution under the empirical distri-
bution F, e.g.

Varp(f) = Varp(é*)
Gp(a) = Ggla)
Gp'(975) = G7'(.975)

where 6 is a parameter estimate, or G is the sampling

distribution (and G the bootstrap distribution).
Curiously, that seemingly innocent introductory

paragraph contains a serious error — where the

bootstrap should not be used. In this article we
outline diagnostic procedures which can be used to
diagnose that error.

The basic theme in a variety of diagnostic proce-
dures is to compare the sampling distribution under
F' with the sampling distribution under other dis-
tributions, typically with support on the observed
data. Here we consider three such procedures:

o Jackknife-after-bootstrap (jackknife sample)
e Iterated bootstrapping (bootstrap sample)
e Bootstrap tilting diagnostics (tilted sample)

This article proceeds largely by examples.

2 Example 1
In this example we observe n = 28 observations from
a distribution F', and the statistic of interest is 6 =
. The empirical and bootstrap distributions are
shown in Figure 1
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Figure 1: Empirical distribution, and bootstrap dis-
tribution of the sample mean

It is natural to attempt to use the bootstrap to
estimate quantiles of the sampling distribution of X.
But Figure 2 shows how sensitive those quantiles are
to changes in F'. In retrospect, it is clear that one
should not do :chis; the quantiles of the sampling
distribution of # are independent of F' (and ), only
if # is worthless as an estimator of §. Unfortunately,
this is a common mistake when bootstrapping; this



diagnostic procedure could be used to help prevent
this error.
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Figure 2: Sensitivity of quantiles of the bootstrap
distribution to changes in the underlying distribu-
tion, using bootstrap tilting diagnostics. Shown are
two weighted empirical distributions, distributions
with support on the original data but unequal prob-
abilities, and the bootstrap distributions when sam-
pling from those weighted empirical distributions.

But consider a variation of this example, where
the data is the same, but the bootstrap is used to es-
timate the distribution of X —pu, with bootstrap ana-
log X* — X. We see in Figure 3 that the bootstrap
distribution is now much less sensitive to changes
in the underlying distribution. Hence it would be
reaonable to use the bootstrap to estimate quantiles
of X — p — at least for these data, which have little
skewness. We see another example later where this
is not the case.
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Figure 3: Shown are two weighted empirical distri-
butions, and the corresponding bootstrap distribu-
tions of X* — X.

Jackknife-after-bootstrap The JAB may also
be used as a diagnostic procedure in this example.
Here bootstrap sampling is from a weighted empiri-

cal distribution, with weight 1/(n — 1) on all obser-
vation but one, and weight O on that observation.
Figure 4 shows the corresponding bootstrap distri-
butions, one for each jackknife sample. As above, we
see that the distribution of X™* is very sensitive to
the underlying distribution, while the distribution of
X* — X is relatively insensitive.

Unfortunately, the JAB procedure is ineffective
as a visual diagnostic procedure for large n.
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Figure 4: Jackknife-after-bootstrap sampling distri-
bution of X* and X* — X.

Bootstrap-after-bootstrap The iterated boot-
strap may also be used as a diagnostic procedure;
here the weighted empirical distributions are boot-
strap samples. Figure 2 shows the bootstrap-after-
bootstrap (BAB) distributions of X* and X* — X.
As before, the distribution of X* is very sensitive
to the underlying distribution. However, we notice
here a phenomena not apparent earlier, that the dis-
tribution of X* — X has a variance that depends on
the variance of the weighted empirical distribution.
We discuss this later.

3 Bootstrap Tilting Mechanics

The weights used in the weighted empirical distribu-
tions used in Example 1 were calculated by “expo-
nential tilting,” with weights of the form

w; = cexp(7(z; — T))

where ¢ normalizes the weights to sum to 1 and 7
is a “tilting parameter” — positive 7 tilts to the
right, with larger weights on the larger observations,
and negative 7 tilts left. Exponential tilting may be
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Figure 5: Bootstrap-after-bootstrap sampling distri-
bution of X* and X* — X.

viewed as an approximation to “maximum likelihood
tilting”, with weights of the form

C
wy = ————.
¢ ].—T(:L’i—if’)

The ML weights maximize [] w; subject to > w; =
1 and Y w;z; = p (for any p), and have nicer statis-
tical properties, producing more conservative (and
more accurate) inferences in confidence interval and
hypothesis testing situations [2, 1, 6, 5], and have
connections to empirical likelihood [4, 7].

In a hypothesis testing setting 7 is chosen to sat-
isfy > w;x; = po. In bootstrap tilting confidence
intervals, 7 is chosen so that P(X* < Z) = a/2 or
(1 — a/2). For bootstrap tilting diagnostics [3], we
use the same 7 values as for confidence intervals,
and possibly some intermediate values, in order to
investigate sensitivity over a likely range of values of
0.

Tilting can be generalized to statistics other than
the mean by replacing x; — Z in the tilting formulae
with the empirical influence function, and replacing
> w;z; with the appropriate statistic calculated for
a weighted distribution.

4 Example 2

This example is similar to the first example, except
now the original data are skewed. Figure 6 shows
the bootstrap distributions when sampling from the
empirical distribution (center) and weighted empir-
ical distributions (using tilting). Note that in this
case the variance changes as 6 changes.
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Figure 6: Bootstrap tilting diagnostics, for the dis-
tribution of X*, when sampling from a skewed
dataset.

5 Relative Advantages of Diagnostic
Procedures
These two examples point out a key characteristic
of bootstrap tilting diagnostics — it measures the
sensitivity of the sampling distribution to changes
in §. For the relatively symmetrical data in Exam-
ple 1, changing the mean did not change the vari-
ance, while in Example 2 changing the mean did
change the variance.

For comparison, recall the BAB results for the
first example, in which the variance of the bootstrap
distributions varied, but it was not clear whether
there was any relationship between the variance of
the distributions and the quantity of interest, the
mean.

Hence bootstrap tilting diagnostics have the ad-
vantage of focusing on the quantity of interest.

Bootstrap-after-bootstrap diagnostics have the
advantage of showing many possible ways in which
the sampling distribution could vary. And JAB diag-
nostics have the advantage of showing the influence
of individual observations on the sampling distribu-
tion.

JAB and bootstrap tilting have computational
advantages, in that the diagnostics can be computed
without actually generating bootstrap samples from
the weighted empirical distributions. In the case of
JAB, this is done by omitting all bootstrap samples
which include the observation which is assigned zero
weight. In the case of bootstrap tilting it is done
by importance sampling, assigning different weights
to bootstrap samples, proportional to the product
of the w; weights for the observations in the boot-
strap sample. In contrast, BAB is computationally
expensive, requiring a set of second-level bootstrap
samples from each first-level bootstrap sample.
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