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Abstract

The EM algorithm can be very slow to converge. This can be
sped up by Aitken acceleration, a ”step-lengthening” method
in which the direction between successive parameter vectors
is chosen by vanilla EM, but the step size is modified. Aitken
is particularly effective when convergence is dominated by a
single large eigenvalue, with other eigenvalues near zero. For
other situations there are multivariate versions of Aitken, but
they can be unstable.

We propose a ”multiple univariate” version of Aitken,
where a sequence of step length factors is used to speed con-
vergence for all eigenvalues, without explicitly identifying
the eigenvalues.

Keywords: EM algorithm, Aitken acceleration, accelera-
tion, convergence, relaxation

1 Introduction

Step-lengthening methods apply to certain kinds of linearly
convergent algorithms, including the EM method and some
iterative procedures in linear algebra. Letθ be a vector-valued
parameter of interest of lengthp, g an iterative operation that
produces a new estimate forθ given the current estimate

θ̂k+1 = g(θ̂k)

and letθ∗ = θ̂∞ be the optimum value. LetJ = J(θ) be the
gradient ofg at θ, andJk = J(θ̂k). We have the following
two relationships:

θ̂k+1 − θ∗
.= Jk(θ̂k − θ∗) (1)

and

∆k+1 = θ̂k+1 − θ̂k
.= Jk∆k = Jk(θ̂k − θ̂k−1). (2)

In a linear problemJ is independent ofθ and the equali-
ties hold exactly. More generally,J is continuous, and ap-
proachesJ(θ∗) ask increases.

∗Acknowledgments: This work was supported by NIH 2R44CA65147-
02.

The convergence of the sequence(θk) is determined by the
eigenvalues ofJ (atθ∗). We have

θk+j − θ∗
.= Jj(θk − θ∗)

with equality in linear problems. I assume that all eigenval-
ues ofJ are in[0, 1) (this assumption may be relaxed in some
cases). The largest eigenvalueλ determines the convergence
rate asymptotically, and corresponds to thefraction of miss-
ing informationin an EM problem. The corresponding eigen-
value is theleast-favorable direction. Figure 1 gives a small
example, whenp = 2 and the eigenvalues are 0.9 and 0.5.
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Figure 1: Linear convergence in two dimensions, eigenvalues
0.9 and 0.5



2 Aitken Acceleration

Ignoring the changes inJ from one iteration to the next, we
have

θ∗ = θ̂k +
∞∑

j=1

∆k+j

.= θ̂k +
∞∑

j=1

Jj∆k

= θ̂k + J(I − J)−1∆k

= θ̂k−1 + (I − J)−1∆k (3)

where the sum converges because the eigenvalues are less
than 1. IfJ or a good approximation to it is known this would
provide an estimate ofθ∗. The idea in Aitken acceleration is
to estimateJ using the most recentp + 1 values of∆. It
has been used successfully for smallp in (Laird et al. 1987)
In high dimensions the full version of Aitken is impractical
because of storage requirements, and may fail to converge
even in small dimensions, even with some safeguards (Lan-
sky and Casella 1990). The process is also numerically in-
stable. Jamshidian and Jennrich (1997) give references, from
the EM and numerical analysis literature.

It’s no surprise that Aitken acceleration fails. LetQΛQ′ =
J be the eigen-decomposition ofJ , with eigenvaluesΛj for
j = 1, . . . , p (with λ = Λ1) and corresponding eigenvectors
Qj (columns ofQ), thenQj · ∆k → cjΛk

j andQj · (θ̂k −
θ∗) → CjΛk

j for some constantscj , Cj . Unless all eigen-
values are approximately the same, then for reasonably large
k both the step sizes and the “errors” (θ̂k − θ∗) will nearly
lie in the subspace ofRp generated by the largest eigenvec-
tors (by which we mean the eigenvectors corresponding to the
largest eigenvalues). This near singularity makes the matrix
inversions performed in Aitken unstable.

There is potential for Aitken acceleration limited to a
lower dimensional subspace generated by the most recents
values of∆ has promise, wheres is a small integer, see
(Smith et al. 1987; Sidi et al. 1986). But these procedures are
more complicated, and less robust in nonlinear problems like
EM.

3 Step-lengthening methods

Consider the case of one dimension,p = 1. Thenλ may
be estimated bŷλk = ∆k/∆k−1, and (3) reduces tôθ∗ =
θ̂k−1 + (1 − λ̂)−1∆k. In linear problems this gives an ex-
act approximation. This is an example of a step-lengthening
method; the new estimate is the old value,θk−1, plus a step-
length factor(1− λ̂)−1 times the step∆k that would be taken
by the EM or other linearly convergent algorithm.

In multivariate problems we may consider estimates of the
form

θ̃k = θ̂k−1 + rk∆k (4)

whererk is a constant that may be determined a-priori or
adaptively, and∆k = θ̂k − θ̂k−1 is the step that would be
taken by vanilla EM. Methods of this form are discussed in a
number of articles, reviewed below. But first note the effect
of step lengthening in terms of the eigen-decomposition ofJ .
We have

Q′(θ̂k − θ∗) = ΛQ′(θ̂k−1 − θ∗) =
∑

j

ΛjQj · (θ̂k−1 − θ∗)

and

Q′(θ̃k − θ∗) =
∑

j

(1− rk(1− Λj))Qj · (θ̂k−1 − θ∗).

Instead of a convergence factor ofΛj in the direction of
eigenvectorQj , the factor is now1 − rk(1 − Λj). Since the
eigenvalues are in the range[0, 1), the convergence factors
are in the range[1− rk, 1− rk(1− λ)).

Consider first the case of constant multiplierrk = r.
This is termed the “relaxation method,” or “successive over-
relaxation,” for accelerating convergence for some linear al-
gebra problems, e.g. (Golub and Loan 1996). Hämmerlin and
Hoffmann (1991) give the optimum valuer = 2/(2−λ−Λp)
in terms of the largest eigenvalueλ and the smallest (or most
negative) eigenvalueΛp. Lange (1995) indicate that ifr < 2
(note the strict inequality) then the method converges, and in-
dicate that “For problems with a high proportion of missing
data, the value ofr = 2 often works well.” However, we note
that this is not true if any eigenvalues are near zero, e.g. if the
number of missing values for one variable is small. If there
is a zero eigenvalue, the corresponding convergence factor is
1 − 2(1 − 0) = −1, so that the algorithm oscillates without
converging. Otherwise, if there is a sufficiently small eigen-
value the convergence is slower than with no multiplier.

Jamshidian and Jennrich (1997) indicate that “Step-
lengthening seems to give only small gains over EM com-
pared to· · ·”, and cite three references. The evidence cited
is not sufficient to reject step-lengthening methods. We dis-
cussed (Lange 1995) above. The step length calculations in
(Jamshidian and Jennrich 1994) involve approximate opti-
mization of an objective function given a direction, a clas-
sical technique in nonlinear optimization that bears little rela-
tion to the procedures we discuss below. Finally, Laird et al.
(1987) do not seem to have applied step-lengthening in any
examples. They considered it, usingrk = (1 − λ̂k)−1, with
λ̂k = p−1

∑p
j=1 ∆k,j/∆k−1,j , but quit because it was appar-

ent that something was wrong—asymptotically the terms in
the summation should be approximately equal, but they var-
ied substantially in their example. We note that theirλ̂k is



very unstable because some of the values in the denominator
could be near zero.

More stable estimates ofλ are available. We run EM
twice, first fromθ̂k−2 to obtainθ̂k−1, then fromθ̂k−1 to ob-
tain θ̂k. Then three estimates ofλ, in order of increasing size,
are:

λ̂(1) =
∆k ·∆k−1

|∆k−1|2
(5)

λ̂(2) =
|∆k|
|∆k−1|

(6)

λ̂(3) =
|∆2

k|
∆k ·∆k−1

(7)

The three estimates are equivalent if∆k and∆k−1 are paral-
lel, e.g. if there is only one non-zero eigenvalue. The third is
the most accurate (in linear problems, and asymptotically for
other problems), and even this one is conservative. In other
words,λ̂(1) ≤ λ̂(2) ≤ λ̂(3) ≤ λ. The proof follows from writ-
ing ∆k−1 =

∑
j cjΛk−1

j Qj =
∑

j bjQj for some constants
cj andbj , so that∆k−1·∆k−1 =

∑
b2
j , ∆k−1·∆k =

∑
b2
jΛj ,

and∆k · ∆k =
∑

b2
jΛ

2
j . Thenλ̂(3) =

∑
b2
jΛ

2
j/

∑
b2
jΛj is

a weighted average of the values ofΛj (with weightsb2
jΛj),

so must be less than or equal toλ. The other inequalities are
obtained in a similar fashion.

We have used the most conservative estimate and most
liberal estimates successfully, with moderate to substantial
speedups for EM estimates of Normal parameters in ran-
domly generated datasets with missing values. To do this,
we alternated between unaccelerated and accelerated steps;
after one step from̂θk−2 to θ̂k−1 with with no acceleration,
we compute the EM step̂θk, estimateλ using the sequence
of three parameter estimates, and replace the final parameter
vectorθ̂k with an accelerated version.

This alternating procedure gives some interesting behav-
ior. The estimates of the largest eigenvalue converge to an
oscillating sequence, as in Figure 2; the subsequences formed
by every other value converge to one of two limits. The upper
limit is between the largest and second largest eigenvalues;
the lower limit may be above or below the second eigenvalue,
or smaller yet, depending on the whole set of eigenvalues and
on the initial parameter estimates.

The cause of this is that when a relatively accurate esti-
mate ofλ is used for acceleration, the errorθ̃k − θ∗ in the
direction corresponding to the corresponding eigenvalueQ1

is substantially reduced. Then the next estimate ofλ is much
smaller, because most of the movement in the sequence of
estimates occurs in the other eigen directions. Acceleration
with a smallerλ̂ reduces the errors in the directions corre-
sponding to smaller eigenvalues, so the next timeλ is esti-
mated the changes in directionQ1 again dominate.

Variability in λ̂ was unexpected, and at first glance seems
undesirable. However, followup experiments with the oscil-
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Figure 2: Estimates of̂λ in alternate iterations

lating estimate replaced by the exact largest eigenvalue turned
out even worse. Whenλ is large the multiplier is large, and
if some eigenvalues are small the accelerated sequence di-
verges in the corresponding directions. We see this in Fig-
ure 3, where accelerating by a factor of 10 on alternate steps
based onλ = 0.9 causes divergence. In contrast, accelerating
on alternating steps with an oscillating sequence of multipli-
ers converges substantially vaster than vanilla EM.

It turns out that variability in multipliers is desirable, in
order to improve convergence in all directions, not just the
direction corresponding to one eigenvalue.

3.1 Multi-step step-lengthening

Recall that the effect of a step-length multiplierrk is to pro-
duce a convergence factor1− rk(1− Λj) in the direction of
thejth eigenvalueQj . In fact, the monomial

fr(x) = 1 + r(x− 1) (8)

describes the convergence factors of all eigenvalues, for a sin-
gle step. This passes through(1, 1) (so acceleration has no
benefit if an eigenvalue is exactly 1) and has sloper (so con-
vergence is approximatelyr times faster for eigenvalues very
near 1).

Furthermore, we can characterize the effect of multiple it-
erations, possibly with different acceleration factors, by the
product of monomials

fr(x) =
∏

1 + rk(x− 1) (9)
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wherer = (r1, . . . , rk, . . . , rK). Note that the effect ofK
iterations of (4) in the direction of eigenvalueQj is given by

Qj · (θ̂K − θ∗) = fr(Λj)Qj · (θ̂0 − θ∗).

This polynomial allows us to analyze acceleration se-
quences. A goodK-step procedure makes|fr(Λj)| as near
zero as possible for everyj. Vanilla EM corresponds to using
rk = 1, with maxj |fr(Λj)| = λK . A constant multiplier
of rk = 2 makesfr(0) = (−1)K , which does not converge
to zero. If the eigenvalues were known (and the application
were exactly linear) we could obtain perfect estimates after
p iterations by choosingr so that the polynomial has roots
at eachΛj , usingrk = (1 − Λk)−1 for k = 1, . . . , p. Any
permutation of thisr would also work.

Steps withrk > 2 can actually increase the distance from
the final solution, by increasing the distance in the directions
of the small eigenvectors. However such steps should not be
viewed in isolation, but rather as part of a sequence of steps.
Figure 4 shows six polynomials, some of which have multi-
pliers greater than 2. The first row of panels is for straight
EM, either 1 or 4 steps (the latter has vertical lines atx = 0.5
andx = 0.8 for comparison with later graphs). The left panel
in row 2 shows the effect of a single step multiplier of 3; in
isolation it is unstable, withf off the page for small eigen-
values. However, when combined with a smaller multiplier,
e.g.r = 1 (i.e. no acceleration) as in the right middle panel,
it results in an effective two-step procedure.

If the eigenvalues are unknown but are known to be in the
range[s, t], we might chooser to minimize the maximum
value of |fr(x)| over the ranges ≤ x ≤ t; the roots of this
minimax polynomial are approximately linear translates of
the roots of the Chebyshev polynomial,

zk = 1− 1/rk = h(cos(π(k − 1/2)/K)) (10)

wherezk is the zero associated withrk andh is the linear
transformation that maps the interval[−1, 1] to [s, t] (any
permutation of thisr may be used). (“Approximately”, be-
cause the minimax problem here is not precisely the same as
the usual interpolation minimax problem that leads to Cheby-
shev’s polynomial, because here the monomials have slopes
that depend on the roots.)

There is a technique in the numerical analysis literature
known as Chebyshev acceleration, which is different than the
procedure here. We discuss this in Section 3.2 below.

The final two graphs in Figure 4 show the the minimax
solutions for the ranges[0, 0.5] and[0, 0.8], respectively. By
comparing the maximum values of these polynomials on the
corresponding intervals with thex4 polynomial shown in the
right side of the first row over the same ranges, we see that
the errors obtained by accelerating based on Chebyshev roots
can be much smaller than for vanilla EM.

3.1.1 Practical Issues

We now turn to four practical issues: the number of iterations
is not generally determined in advance, order matters in non-
linear problems like EM, reasons to be conservative in non-
linear problems, and the range of eigenvalues is not known.

If K is not determined in advance, then we may replace
(10) with

zk = h(cos(πuk)) (11)

whereuk is a sequence of numbers uniformly distributed be-
tween 0 and 1, either randomly or deterministically.

We particularly recommend a “golden ratio sequence”

uk = fp(τk) (12)

wherefp(x) = x − bxc is the fractional part ofx andτ =
(3 −

√
5)/2 is derived from the golden ratio; the result is a

sequence such that the gaps between sorted roots are nearly
as small as possible. This is shown in Figure 5.
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Figure 5: The golden ratio sequence (12)

In a linear problem the order in which roots are used does
not matter. However, in EM and other nonlinear applications
the order does matter. Aŝθ changes,J(θ̂) and its eigenvalues
and eigenvectors change as well. One cannot assume that an
eigen direction which has been killed (in that the error in that
direction is small) will stay dead. The golden ratio sequence
(12) is particularly good when order matters, because it fills
in recent gaps.

In the case of a nonlinear procedure such as EM there is
some value in choosing values ofrk which are smaller than
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indicated by Chebyshev roots, particularly in early stages of
the EM, because this is more conservative and less likely to
cause problems. We have observed divergence in EM appli-
cations when too much acceleration is applied too early.

There is an additional reason to prefer using smaller mul-
tipliers than suggested by Chebyshev roots. (9) can be rewrit-
ten as

fr(x) =
∏

1 + rk(x− 1) = (
∏

rk)(
∏

x− zk). (13)

The Chebyshev roots give the approximate minimax solu-
tion for the simple polynomial

∏
(x − zk), but fr(x) has an

additional term
∏

rk, which is smaller when multipliers are
smaller.

The last practical issue is that the range of eigenvalues is
unknown. The solution at the lower end is simple; pretend
the smallest eigenvalue is zero. It is difficult to estimate the
smallest eigenvalue in EM applications, and there is typically
little value in doing so; little efficiency is lost by choosing a
sequence of roots as if the smallest eigenvalue were 0.

The affect of estimating the largest eigenvalueλ is more
interesting, in three ways. First, estimates (5–7) are conserv-
ative, weighted averages of all eigenvalues with weights that
depend on the magnitudes of current errors in the eigenvalue
directions. In the absence of acceleration, a sequence of es-
timatesλ̂k converges toλ from below. This remains true if
acceleration is used conservatively, but is not true for more
general acceleration sequences. We noted above the “interest-
ing behavior” when acceleration is applied on alternate steps,
that estimateŝλk ultimately oscillate. And that occurs even
with a procedure that is conservative in the sense that all ac-
celeration factors were smaller than the optimal factor for the
largest eigenvalue. Less conservative acceleration can give
less stableλ estimates.

Second, depending how the sequence of values depends
on λ̂k, there could be undesirable bunching and gaps of the
roots. As a toy example, suppose that all roots are of the form
λ̂kj/100 for integers0 ≤ j ≤ 100 and that estimateŝλ alter-
nate between between 0.25 and 0.5, and that even values of
j occur only when̂λk = 0.5. Then the realized sequence of
roots are of the form.25l/100, wherel is an integer from the
set{0, 1, 1, 2, 3, 3, 4, 5, 5, . . . , 49, 49, 50, 51, 53, 55, . . . , 99}.
In the upper half of the range there are larger gaps, and alter-
nate small integers are chosen with double frequency.

Second, use of (5–7) require that the first of a series of
two steps be unaccelerated. Every unaccelerated step corre-
sponds to an extra zero at 0.0. These unaccelerated steps are
conservative, allowing other steps to be somewhat liberal.

3.1.2 Asymptotic Convergence

We may combine a sequence of uniform numbersuk with
any monotone transformation to produce a sequence of roots

zk within [0,1] with densityg, e.g. by the inverse distribution
transformationG−1(uk). Then the asymptotic convergence
rate at eigenvaluex is governed by

lim
K→∞

K log(|fr(x)|) =
∫ 1

0

(log(|x−z|)−log(1−z))g(z)dz.

(14)
If the sequence of uniform numbers is random, then the con-
vergence holds almost surely; if deterministic then it should
be interpreted as referring to the convergence for random
points in a sequence of neighborhoods ofx, with neighbor-
hood width decreasing to zero at a rate slower than1/K.

The term− log(1 − z) in the integral favors smaller mul-
tipliers; this is the analog of the additional term

∏
rk in (13).

3.1.3 Recommendation

As a general rule our bias is toward conservative procedures,
to avoid convergence problems, because of the complications
caused by needing to estimate the maximum eigenvalue, and
because of the extra term

∏
rk in (13). Hence we do not rec-

ommend using linear translates of the Chebyshev polynomial;
the large number of roots at the right end of the range makes
this procedure relatively unstable and blows up the extra fac-
tor.

Instead, we begin with a “half-Chebyshev” idea–to use
roots which have the high density near zero, but low den-
sity near the estimated maximum eigenvalue. Consider the
Chebyshev roots over the range[0, 2], which for fixedK are
zk = 1+cos(π(k−1/2)/K)) for k = 1, . . . ,K. The bottom
half of these have the desired high density near zero. Hence,
we begin with values of the form

zk = 1 + cos(π(1 + uk)/2) (15)

whereuk is a sequence of values in[0, 1).
We generate valuesuk from the golden ratio sequence, cal-

culate the correspondingzk, then accelerate using some and
skip others which are too large. What is too large? First,
in EM we particularly want to be conservative in early steps,
while nonlinear behavior may still be dominating. Hence we
skip roots exceedingj/20 at stepj (the divisor may be ad-
justed, depending on the degree of nonlinearity of the applica-
tion). Second, we skip roots that exceed the current estimate
λ̂.

It is not necessary to estimatêλ every other iteration;
this would result in more unaccelerated steps than necessary,
given that our half-Chebyshev transformation has many roots
near 0.0. We estimate every five iterations. The resulting se-
quence of roots is shown in Figure 6. Note that it tends to be
conservative at the beginning.

Note that we use a fixed sequence of roots and skip those
that exceed̂λ, rather than rescaling (e.g.λ̂zk), because rescal-
ing can cause odd bunching and large gaps. (This turned out
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Figure 6: Roots, based on a transformation of the golden ra-
tio sequence, witĥλ estimated every 5 iterations, roots ex-
ceedingλ̂ skipped, and roots exceedingj/20 skipped at the
beginning.

to be the cause of some quite puzzling results in some exper-
iments.)

The estimatêλ is somewhat unstable, generally increas-
ing towardλ but sometimes declining after a zero has been
picked that is nearλ. It would probably be desirable to keep
a working estimate which is “sticky”, jumping up whenever
a new estimate (5–7) is larger, but decreasing only when two
or three are smaller.

The resulting convergence is shown in Figure 7 The new
sequence is conservative at the beginning, but eventually
makes large improvements in the magnitude of errors.

3.2 Polynomial Acceleration

An alternate approach found in the numerical analysis lit-
erature is “polynomial acceleration” (Hageman and Young
1981), generally applied to purely linear problems rather than
nonlinear applications such as EM. Given an unmodified se-
quence of estimateŝθk, k = 1, . . ., they create a modified
sequence of the form

θ̃k =
∑

j

= 0kcj,kθ̂j (16)

with
∑k

j=0 = 1∀k. In effect each modified estimate is a
weighted average of the unmodified estimates, with weights

that may fall outside the range[0, 1]. The convergence of this
is also analyzed using polynomial functions of eigenvalues,
and coefficientscj,k are chosen to minimize the maximum
value of the polynomial over the known or estimated range of
eigenvalues.

A special case is Chebyshev acceleration, or the Cheby-
shev semi-iterative method (Golub and Loan 1996; Hageman
and Young 1981). This can be written in a form similar to
(4), but based on both the current EM step and the difference
between two most recent modified estimates

θ̃k = θ̃k−1 + rk∆k + sk(θ̃k−1 − θ̃k−2 (17)

where∆k is the EM step from̃θk−1. This eliminates the need
to store many previous parameter estimates.

In polynomial acceleration, the zeroes of the polynomial
at stepk + 1 need not be a superset of those at stepk. In
the case of Chebyshev acceleration, the use of nonzerosk

causes previous zeros of the convergence polynomial to shift;
if at one step the zeroes are zeroes of the Chebyshev polyno-
mial of degreek, at the next step the zeroes are zeroes of the
Chebyshev polynomial of degreek +1 (in each case rescaled
to the interval given by the range of eigenvalues).

However, such shifting of previous zeroes should be used
with caution in nonlinear applications such as EM. The mech-
anism, perturbation of the current accelerated step by some
fraction of the previous step, presumes that the previous step
was governed by the same linear behavior as the current lo-
cation and the solution. Some of the practical issues in Sec-
tion 3.1.1 also argue against this procedure in EM.

3.3 Other Acceleration Work

Varadhan and Roland (2004) discuss a variety of acceleration
procedures, but we became aware of this paper too late to
study it carefully.

4 Summary

In summary, if the maximum eigenvalue of a linearly-
convergent procedure is known but the other eigenvalues are
unknown, then a multi-step procedure is effective where the
acceleration constants are chosen so that the roots of the cor-
responding convergence polynomial are roots of a Chebyshev
polynomial, rescaled to the range from 0 to the largest eigen-
value. If the number of steps is not determined in advance,
then a sequence based on a nonlinear transformation of the
fractional part of multiples of a constant derived from the
golden ratio is effective.

For EM, we prefer a conservative approach, with roots de-
rived from the left half of the roots of a Chebyshev polyno-
mial, and skipping roots which are too large.
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Figure 7: Convergence for vanilla EM, and acceleration on alternating steps with estimated or knownλ
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