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Abstract

Least Angle Regression is a promising technique for variable
selection applications, offering a nice alternative to stepwise
regression. It provides an explanation for the similar behav-
ior of Lasso (L1-penalized regression) and forward stagewise
regression, and provides a fast implementation of both. We de-
scribe a project for creating an open-source S-PLUS/R pack-
ageglars for generalized least angle regression, extending
the lars package of Efron and Hastie andglmpath of Park
and Hastie. We invite outside collaboration, and plan for fu-
ture versions of the package to provide a framework on which
others can build.
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1 Introduction

“I’ve got all these variables, but I don’t know
which ones to use.”

Classification and regression problems with large numbers of
candidate predictor variables occur in a wide variety of sci-
entific fields, increasingly so with improvements in data col-
lection technologies. For example, in microarray analysis, the
number of predictors (genes) to be analyzed typically far ex-
ceeds the number of observations.

Goals in model selection include:

• accurate predictions,
• interpretable models—determining which predictors are

scientifically meaningful,
• stability—small changes in the data should not result in

large changes in either the subset of predictors used, the
associated coefficients, or the predictions, and

• avoiding bias in hypothesis tests during or after variable
selection.

Older methods, such as stepwise regression, all-subsets re-
gression and ridge regression, fall short in one or more of
these criteria. Modern procedures such as boosting (Freund
and Schapire 1997) forward stagewise regression (Hastie et al.
2001), and the Lasso (Tibshirani 1996), improve stability and
predictions, but can be slow.

Efron et al. (2004) show that there are strong connections be-
tween these modern methods and a method they callleast an-
gle regression, and that a single fast algorithm can be used to
implement all of them. They use the term LARS to collectively
refer to least angle regression and the fast implementation of

the other methods. LARS is potentially revolutionary, offering
interpretable models, stability, accurate predictions, graphical
output that shows the key tradeoff in model complexity, and
a simple data-based rule for determining the optimal level of
complexity that nearly avoids the bias in hypothesis tests.

This idea has caught on rapidly in the academic community—
a google scholar search in March 2006 showed 114 citations
of (Efron et al. 2004).

In this article we sketch plans for a collaborative effort be-
tween outside contributors and Insightful Corporation. The
goal of this project is to produce high-quality software for clas-
sification and regression based on LARS.

In Section 2 we give an overview of LARS and its relationship
to other regression methods. In Sections 3 and 4 we summa-
rize work in the first phase of this project and plans for future
work, respectively.

2 Background

In this section we discuss various methods for regression with
many variables. We begin with “pure variable selection” meth-
ods such as stepwise regression and all-subsets regression that
pick predictors, then estimate coefficients for those variables
using standard criteria such as least-squares or maximum like-
lihood. In other words, these methods focus on variable selec-
tion, and do nothing special about estimating coefficients. We
then move on to ridge regression, which does the converse—
it is not concerned with variable selection (it uses all candi-
date predictors), and instead modifies how coefficients are es-
timated. We then discuss LASSO, a variation of ridge regres-
sion that modifies coefficient estimation so as to reduce some
coefficients to zero, effectively performing variable selection.
From there we move to forward stagewise regression, an incre-
mental version of stepwise regression that gives results very
similar to the LASSO. Finally we turn to least angle regres-
sion, which connects all the methods.

We write LAR for least angle regression, and LARS to include
LAR as well as LASSO or forward stagewise implemented by
least angle methods. We use the terms predictors, covariates,
and variables interchangeably (except we use the latter only
when it is clear we are discussing predictors rather than re-
sponse variables).

The example in this section involves linear regression, but
most of the text applies as well to logistic, survival, and other
nonlinear regressions in which the predictors are combined lin-
early. We note where there are differences between linear re-



Table 1: Diabetes Study:442 patients were measured on 10 baseline variables; a prediction model is desired for the response variable
Y , a measure of disease progression one year after baseline. Predictors include age, sex, body mass index, average blood pressure, and six
different blood serum measurements. One goal is to create a model that predicts the response from the predictors; a second is to find a smaller
subset of predictors that fits well, suggesting that those variables are important factors in disease progression.

Patient Age Sex BMI BP S1 S2 S3 S4 S5 S6 Y
1 59 2 32.1 101 157 93.2 38 4.0 4.9 87 151
2 48 1 21.6 87 183 103.2 70 3.0 3.9 69 75
3 72 2 30.5 93 156 93.6 41 4.0 4.7 85 141
...

...
...

...
...

...
...

...
...

...
...

...
442 36 1 19.6 71 250 133.2 97 3.0 4.6 92 57

gression and the nonlinear cases.

Stepwise and All-Subsets Regression

We begin our description of various regression methods with
stepwise and all-subsets regression, which focus on selecting
variables for a model, rather than on how coefficients are esti-
mated once variables are selected.

Forward stepwise regression begins by selecting a single pre-
dictor variable which produces the best fit, e.g. the small-
est residual sum of squares. Another predictor is then added
which produces the best fit in combination with the first, fol-
lowed by a third which produces the best fit in combination
with the first two, and so on. This process continues until some
stopping criteria is reached, based e.g. on the number of pre-
dictors and lack of improvement in fit. For the diabetes data
shown in Table 1, single best predictor is BMI; subsequent
variables selected are S5, BP, S1, Sex, S2, S4, and S6.

The process is unstable, in that relatively small changes in the
data might cause one variable to be selected instead of another,
after which subsequent choices may be completely different.

Variations include backward stepwise regression, which starts
with a larger model and sequentially removes variables which
contribute least to the fit, and Efroymson’s procedure (Efroym-
son 1960), which combines forward and backward steps.

These algorithms are greedy, making the best change at each
step, regardless of future effects. In contrast, all-subsets re-
gression is exhaustive, considering all subsets of variables of
each size, limited by a maximum number of best subsets (Fur-
nival and Wilson 1974). The advantage over stepwise proce-
dures is that the best set of two predictors need not include
the predictor that was best in isolation. The disadvantage is
that biases in inference are even greater, because it considers a
much greater number of possible models.

In the case of linear regression, all computations for these step-
wise and all-subsets procedures can be computed using a sin-
gle pass through the data. This improves speed substantially
in the usual case in which there are many more observations

than predictors. Consider the model

Y = Xβ + ε (1)

whereY is a vector of lengthn, X ann by p matrix,β a vector
of lengthp containing regression coefficients, andε assumed
to be a vector of independent normal noise terms. In variable
selection, when some predictors are not included in a model,
the corresponding terms inβ are set to zero. There are a num-
ber of ways to compute regression coefficients and error sums
of squares in both stepwise and all subsets regression. One
possibility is to use the cross-product matricesX ′X, X ′Y ,
andY ′Y . Another is to use theQR decomposition. Cross-
products andR can both be computed in a single pass through
the data, and in both cases there are efficient updating algo-
rithms for adding or deleting variables. However,QR has bet-
ter numerical properties. See e.g. (Thisted 1988; Monahan
2001; Miller 2002) for further information.

For nonlinear regressions, the computations are iterative, and
it is not possible to fit all models in a single pass through the
data.

Those points carry over to LARS. The original LARS algo-
rithm computesX ′X andX ′Y in one pass through the data;
using theQR factorization would be more stable, and could
also be done in one pass. LARS for nonlinear regression re-
quires multiple passes through the data for each step, hence
speed becomes much more of an issue.

Ridge Regression

The ad-hoc nature and instability of variable selection methods
has led to other approaches. Ridge regression (Miller 2002;
Draper and Smith 1998), includes all predictors, but with typi-
cally smaller coefficients than they would have under ordinary
least squares. The coefficients minimizing a penalized sum of
squares,

n∑
i=1

(Yi −
p∑

j=1

Xi,jβj)2 + θ

p∑
j=1

β2
j . (2)

whereθ is a positive scalar;θ = 0 corresponds to ordinary
least-squares regression. In practice no penalty is applied to



the intercept, and variables are scaled to variance 1 so that the
penalty is invariant to the scale of the original data.

Figure 1 shows the coefficients for ridge regression graphically
as a function ofθ; these shrink asθ increases. Variables most
correlated with other variables are affected most, e.g. S1 and
S2 have correlation 0.90.
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Figure 1:Coefficients for ridge regression (standardized variables)

Note that asθ increases, the coefficients approach but do not
equal zero. Hence, no variable is ever excluded from the model
(except when coefficients cross zero for smaller values ofθ).

In contrast, the use of anL1 penalty does reduce terms to zero.
This yields the LASSO, which we consider next.

LASSO

Tibshirani (1996) proposed minimizing the residual sum of
squares, subject to a constraint on the sum of absolute values
of the regression coefficients,

∑p
j=1 |βj | ≤ t. This is equiva-

lent to minimizing the sums of squares of residuals plus anL1

penalty on the regression coefficients,

n∑
i=1

(Yi −
p∑

j=1

Xi,jβj)2 + θ

p∑
j=1

|βj |. (3)

Figure 2 shows the resulting coefficients. For comparison, the
right panel shows the coefficients from ridge regression, plot-
ted on the same scale. To the right, where the penalties are
small, the two procedures give close to the same results. More
interesting is what happens starting from the left, as all coef-
ficients start at zero and penalties are relaxed. For ridge re-
gression all coefficients immediately become nonzero. For the
LASSO, coefficients become nonzero one at a time. Hence
the L1 penalty results in variable selection, as variables with
coefficients of zero are effectively omitted from the model.

Another important difference occurs for the predictors which
are most significant. Whereas anL2 penaltyθ

∑
β2

j pushes
βj toward zero with a force proportional to the value of the

coefficient, anL1 penaltyθ
∑

|βj | exerts the same force on all
nonzero coefficients. Hence for variables which are most valu-
able, which clearly should be in the model and where shrink-
age toward zero is less desirable, anL1 penalty shrinks less.
This is important for providing accurate predictions of future
values.

In this case, BMI (body mass index) and S5 (a blood serum
measurement) appear to be most important, followed by BP
(blood pressure), S3, Sex, S6, S1, S4, S2, and Age. Some
curious features are apparent. S1 and S2 enter the model rel-
atively late, but when they do their coefficients grow rapidly,
in opposite directions. These two variables have strong pos-
itive correlation, so these terms largely cancel out, with little
effect on predictions for the observed values. The collinear-
ity between these two variables has a number of undesirable
consequences—relatively small changes in the data can have
strong effects on the coefficients, the coefficients are unstable,
predictions for new data may be unstable, particularly if the
new data do not follow the same relationship between S1 and
S2 found in the training data, and the calculation of coeffi-
cients may be numerically inaccurate. Also, the S3 coefficient
changes direction when S4 enters the model, ultimately chang-
ing sign. This is due to high (negative) correlation between S3
and S4.

Forward Stagewise

Another procedure, forward stagewise regression, appears to
be very different from the LASSO, but turns out to have similar
behavior.

This procedure is motivated by a desire to mitigate the nega-
tive effects of the greedy behavior of stepwise regression. In
stepwise regression, the most useful predictor is added to the
model at each step, and the coefficient jumps from zero to the
the least-squares value.

Forward stagewise picks the same first variable as forward
stepwise, but changes the corresponding coefficient only a
small amount. It then picks the variable with highest corre-
lation with the current residuals (possibly the same variable as
in the previous step), and takes a small step for that variable,
and continues in this fashion.

Where one variable has a clear initial advantage over other
variables there will be a number of steps taken for that variable.
Subsequently, once a number of variables are in the model, the
procedure tends to alternate between them. The resulting co-
efficients are more stable than those for stepwise.

Curiously, an idealized version of forward stagewise regres-
sion (with the step size tending toward zero) has very similar
behavior to the LASSO despite the apparent differences. In the
diabetes example, the two methods give identical results until
the eighth variable enters, after which there are small differ-
ences Efron et al. 2004.

There are also strong connections between forward stagewise
regression and the boosting algorithm popular in machine
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Figure 2: Coefficients for LASSO and Ridge Regression (L1 andL2 penalties).

learning (Efron et al. 2004; Hastie et al. 2001). The difference
is not in the fitting method, but rather in the predictors used; in
stagewise the predictors are typically determined in advance,
while in boosting the next variable is typically determined on
the fly.

Least Angle Regression

Least angle regression (Efron et al. 2004) can be viewed as a
version of stagewise that uses mathematical formulas to accel-
erate the computations. Rather than taking many tiny steps
with the first variable, the appropriate number of steps are
determined algebraically, until the second variable begins to
enter the model. Then, rather than taking alternating steps
between those two variables until a third variable enters the
model, the method jumps right to the appropriate spot. Fig-
ure 3 shows this process in the case of 2 predictor variables,
for linear regression.

The first variable chosen is the one which has the smallest an-
gle between the variable and the response variable; in Figure 3
the angleCOX1 is smaller thanCOX2. We proceed in that
direction as long as the angle between that predictor and the
vector of residualsY − γX1 is smaller than the angle between
other predictors and the residuals. Eventually the angle for an-
other variable will equal this angle (once we reach pointB in
Figure 3), at which point we begin moving toward the direc-
tion of the least-squares fit based on both variables. In higher
dimensions we will reach the point at which a third variable
has an equal angle, and joins the model, etc.

Expressed another way, the (absolute value of the) correlation
between the residuals and the first predictor is greater than

O

X2

X1 AB

CD

E

Figure 3: The LAR algorithm in the case of 2 predictors.O is the
prediction based solely on an intercept.C = Ŷ = β̂1X1 + β̂2X2 is
the ordinary least-squares fit, the projection ofY onto the subspace
spanned byX1 andX2. A is the forward stepwise fit after one step;
the second step proceeds toC. Stagewise takes a number of tiny
steps fromO to B, then takes steps alternating between theX1 and
X2 directions, eventually reachingE; if allowed to continue it would
reachC. LAR jumps fromO to B in one step, whereB is the point
for which BC bisects the angleABD. At the second step it jumps
to C. The LASSO follows a path fromO to B, then fromB to C.
Here LAR agrees with LASSO and stagewise (as the step size→ 0
for stagewise). In higher dimensions additional conditions are needed
for exact agreement to hold.



the (absolute) correlation for other predictors. Asγ increases,
eventually another variable will have equal correlation with the
residuals as the active variable, and joins the model as a sec-
ond active variable. In higher dimensions additional variables
will eventually join the model, when the correlation between
all active variables and the residuals drops to the levels of the
additional variables.

Three remarkable properties of LAR There are three re-
markable things about LAR. First is the speed: Efron et al.
(2004) note that “The entire sequence of LARS steps with
m < n variables requiresO(m3 + nm2) computations — the
cost of a least squares fit onm variables.”

Second is that the basic LAR algorithm, based on the geometry
of angle bisection, can be used to efficiently fit the LASSO and
stagewise models, with certain modifications in higher dimen-
sions (Efron et al. 2004). This provides a fast and relatively
simple way to fit LASSO and stagewise models.

Madigan and Ridgeway (2004) comments that LASSO has had
little impact on statistical practice, due to the inefficiency of
the original LASSO and complexity of more recent algorithms
(Osborne et al. 2000) and that this “efficient, simple algorithm
for the LASSO as well as algorithms for stagewise regression
and the new least angle regression” are “an important contri-
bution to statistical computing”.

Third is the availability of a simpleCp statistic for choosing
the number of steps,

Cp = (1/σ̂2)
n∑

i=1

(yi − ŷi)2 − n + 2k (4)

wherek is the number of steps and̂σ2 is the estimated residual
variance (estimated from the saturated model, assuming that
n > p). This is based on Theorem 3 in (Efron et al. 2004),
which indicates that afterk steps of LAR the degrees of free-
dom η =

∑n
i=1 cov(µ̂i, Yi) is approximatelyk. Using this

Cp statistic, one would stop after the number of stepsk that
minimizes the statistic.

Zou et al. (2004) extend that result to LASSO, showing an un-
biased relationship between the number of terms in the model
and degrees of freedom, and discussCp, AIC and BIC crite-
rion for model selection.

There are some questions about thisCp statistic (Ishwaran
2004; Loubes and Massart 2004; Madigan and Ridgeway
2004; Stine 2004), and some suggest other selection criteria,
especially cross-validation.

Comparing LAR, LASSO and Stagewise In general in
higher dimensions native LAR and the least angle implemen-
tation of LASSO and stagewise give results that are similar
but not identical. When they differ, LAR has a speed advan-
tage, because LAR variables are added to the model, never
removed. Hence it will reach the full least-squares solution,
using all variables, inp steps. For LASSO, and to a greater

extent for stagewise, variables can leave the model, and possi-
bly re-enter later, multiple times. Hence they may take more
thanp steps to reach the full model. Efron et al. (2004) test the
three procedures for the diabetes data using a quadratic model,
consisting of the 10 main effects, 45 two-way interactions, and
9 squares (excluding the binary variable Sex). LAR takes 64
steps to reach the full model, the LASSO variation takes 103,
and stagewise takes 255. Even in other situations, when stop-
ping short of the saturated model, LAR has a speed advantage.

The three methods have interesting derivations. LASSO is re-
gression with anL1 penalty, a relatively simple concept; this is
also known as a form of regularization in the machine learning
community. Stagewise is closely related to boosting, or “slow
learning” in machine learning. LAR has a simpler interpreta-
tion than the original derivation; it can be viewed as in relation
to Newton’s method, which makes it easier to extend to some
nonlinear models such as generalized linear models.

Related Work

We begin with a review of other contributions in the literature,
followed by a summary of work needed.

Other penalty approaches Ridge regression uses anL2

penalty, and LASSO anL1 penalty. Zou and Hastie (2005b)
propose the “elastic net”, penalized regression with a sum of
L1 andL2 penalties. This is useful in the analysis of microar-
ray data, as it tends to bring related genes into the model as a
group. It appears to give better predictions than LASSO when
predictors are correlated.

Tibshirani et al. (2005) propose the “fused LASSO”, involv-
ing a combination of anL1 penalty on coefficients, and an
L1 penalty on the difference between adjacent coefficients.
This is useful for problems such as the analysis of proteomics
data, where there is a natural ordering of the predictors (e.g.
measurements on different wavelengths) and coefficients for
nearby predictors should normally be similar; it tends to give
locally-constant coefficients.

Yuan and Lin (2006) discuss “grouped LASSO” and “grouped
LARS”, for use when some predictors have multiple degrees
of freedom, such as factor variables.

Nonlinear models The original LARS method is for lin-
ear regression. Several authors have discussed extensions to
other models, including Cox regression (Gui and Li 2005; Park
and Hastie 2006b), generalized linear models (Madigan and
Ridgeway 2004; Park and Hastie 2006b), robust linear regres-
sion (Rosset and Zhu 2004a; Van Aelst et al. 2005), exponen-
tial family models (Rosset 2005), and support vector machines
(Zhu et al. 2003; Hastie et al. 2004).

Some additional authors discuss general strategies for solu-
tions in nonlinear models. Roth (2004) discusses a method for
iteratively reweighted least squares (IRLS) applications. Ros-



set and Zhu (2004b) discuss conditions under which coeffi-
cient paths are piecewise linear, and Rosset (2005) discuss a
method for tracking curved coefficient paths; however, the al-
gorithm requires computing a gradient and Hessian at each of
many small steps, and so is poorly suited for large problems.
Kim et al. (2005b) propose a gradient approach particularly
useful for high dimensions.

Work needed LARS has considerable promise, offering
speed, interpretability, relatively stable predictions, close to
unbiased inferences, and nice graphical presentation of the
whole sequence of coefficients. But considerable work is re-
quired to turn this promise into widely-used reality. A num-
ber of different algorithms have been developed, for linear and
nonlinear models. These differ in speed, numerical stability,
accuracy (in the nonlinear case, how well do algorithms track
the exact curved coefficient paths), collinearity, and handling
of details such as variables that are nearly tied in importance.
Work is needed to compare the algorithms, with artificial and
real data, with a variety of sizes — large and smalln andp.

Speed is an issue for nonlinear models, particularly if cross
validation is used for model selection, or bootstrapping for in-
ferences. In the linear regression case the cross-product ma-
trices orQR decomposition required for computations can be
calculated in a single pass through the data. In contrast, for
the nonlinear models, fitting each subset of predictors requires
multiple passes through the data.

Alternate penalties such as the elastic net and fused LASSO
offer advantages for certain kinds of data, in particular mi-
croarrays and proteomics; work is needed to create algorithms
using these penalties in nonlinear models, to investigate their
properties, and to provide guidance on choosing the tuning
parameters—in contrast to LAR and LASSO, which each have
only a single tuning parameter, these procedures have two or
more.

The original LARS methodology is limited to continuous or
binary covariates. The grouped LASSO and LAR are one ex-
tension to factor variables or other variables with multiple de-
grees of freedom such as polynomial and spline fits. Work
is needed to investigate these methods, and to extend them to
nonlinear models.

There are a number of practical considerations in some ap-
plications that need attention, including order restrictions
(e.g. main effects should be included in a model before in-
teractions, or linear terms before quadratic), forcing certain
terms into the model, allowing unpenalized terms, or apply-
ing different levels of penalties to different predictors based
on an analyst’s knowledge. For example, when estimating a
treatment effect, the treatment term should be forced into the
model and estimated without penalty, while covariates should
be optional and penalized.

A variety of work is needed under the broad category of infer-
ences, including tuning parameters and more traditional infer-
ences. LARS and LASSO require the choice of a tuning pa-

rameter (the number of steps, or magnitude of theL1 penalty);
the elastic net, and fused LASSO require multiple tuning pa-
rameters. Work is needed to investigate and compare meth-
ods includingCp, AIC, BIC, cross-validation, and empirical
Bayes. The theoretical work on theCp statistic to date is un-
der the null hypothesis that no coefficients are nonzero; how is
it affected when some coefficients are nonzero?

Work is needed to develop estimates of bias, standard error,
and confidence intervals, for predictions, coefficients, and lin-
ear combinations of coefficients. Are predictions sufficiently
close to normally-distributed to allow for the use oft confi-
dence intervals? Coefficients are definitely not normally dis-
tributed, due to a point mass at zero; but when coefficients are
sufficiently large, mightt intervals still be useful?

Work is also needed to look at the signal-to-noise ratio for
these methods, and to compare to alternatives. A good signal-
to-noise ratio would be a strong impetus for the statistical com-
munity to use the methods.

Work is needed to develop numerical and graphical diagnostics
to interpret regression model output.

Finally, to truly realize the promise of these methods, they
must be encoded in robust and easy-to-use software suitable
for a broad base of users, not just sophisticated academic re-
searchers.

3 Phase I Work

Our work on this project falls into two phases of NIH
funding—Phase I to demonstrate proof-of-concept was com-
pleted in March 2006, and Phase II for more substantial devel-
opment is just beginning.

There were three technical goals in Phase I:

• extension to logistic regression
• allow factor variables with more than two levels
• develop efficient and numerically stable computation

These goals were achieved; we omit details for reasons of
space. We also made progress in dealing with linear depen-
dence, and speed improvements.

The most striking aspect of Phase I was our decision to pro-
duce an open-source library that will run in both S-PLUS and
R, rather than a closed-source version for S-PLUS only. This
makes it easier to benefit from open-source work done in the
academic community, and improves our ability to work col-
laboratively with outside contributors.

LARS is an area of active research. Much of the academic soft-
ware for LARS and Lasso has been released as S-PLUS pack-
ages (lasso2 (Lokhorst et al. 1999),brdgrun (Fu 2000),
lars (Efron and Hastie 2003)) or R packages (glmpath
(Park and Hastie 2006a),elasticnet (Zou and Hastie
2005a),glasso (Kim et al. 2005a)).

Insightful is working to facilitate the use of R packages in
S-PLUS; this is a key feature of the next release of S-PLUS,



which entered beta testing in April 2006. Our prototype
“S+GLARS” library is based in part onlars andglmpath ,
runs in both S-PLUS and R, and is released under an open
source license, GPL 2.0 (GNU Public License), to allow oth-
ers to build on the framework we develop.

This decision was greeted enthusiastically by key potential
collaborators, and a large number of researchers in the area
have requested the prototype library produced during Phase I.

Prototype Library: S+GLARS We created a software li-
brary that runs in both S-PLUS and R. The main fitting rou-
tines in the library are:

• lars.fit.eh the original Efron-Hastie algorithm, in
S; LAR, LASSO and forward stagewise,

• lars.fit.fortran FORTRAN version of the origi-
nal algorithm, LAR, LASSO and forward stagewise,

• lars.fit.s more accurate algorithm, in S; LAR and
LASSO,

• glars.fit.s logistic regression, in S; LAR,
• glmpath logistic, linear, and Poisson regression, calls

FORTRAN for core calculations; LASSO, and
• coxpath Cox proportional hazards regression, calls

FORTRAN for core calculations; LASSO.

The lars function provides a user-friendly front end to the
three fitting routines for the linear case. It allows the user to
specify variables to use by means of a formula, rather than con-
structing a design matrix manually. This function supports fac-
tor variables using the dummy variable approach (the second
approach to factors currently requires callinglars.fit.s
directly).

There are also some routines for plotting and nicely-formatted
output of the fitting results, or further analysis such as cross-
validation.

The lars.fit.eh function is from (Efron and Hastie
2003); theglmpath andcoxpath functions are from (Park
and Hastie 2006b). The plotting, printing, and cross-validation
routines are also largely from those libraries. We have made
some improvements, ranging from the obvious (allow space
for axis labels so they are not off the page) to more subtle
(avoiding programming constructions that fail for some user
inputs).

4 Phase II

This is a rapidly developing field, with the possibility of sub-
stantial outside collaboration from academics. Hence our ini-
tial efforts will be focused on creating an attractive platform
for collaborative work.

The Phase I prototype is not easily extendable. Our goal is
to create a framework, in the form of an S-PLUS/R library,
that is attractive for outside collaborators to work in and ex-
tend. This framework should include appropriate front-end
functions, e.g.lars for linear regression,glars for gener-

alized linear models, andcoxlars for proportional hazards
regression. These front ends should handle initial data mas-
saging (subsetting, exclusion of missing values if that option
is chosen), selection of variables according to a user-specified
formula, processing of factor variables, polynomials, spline
terms, interactions, etc., then call a fitting routine. In con-
trast to the existing academic software, where functions are
organized primarily for the convenience of the developer, the
front-end functions should mimic the user interface of func-
tions analysts are used to, such aslm , glm , andcoxph , for
linear, generalized linear, and cox regression, respectively.

The fitting routines provide an opportunity for outside collab-
oration; they may be written by anyone, provided they fol-
low certain guidelines (to be developed) for input and out-
put. In the prototype library, one of the fitting routines is
lars.fit.eh , the original LARS algorithm as coded by
Efron and Hastie (Efron and Hastie 2003).

Collaborators may also provide routines for plotting, diagnos-
tics, or other computations.

After the first release of the platform, we plan to refine it based
on feedback from collaborators, and to implement extensions
such as better support for factors, polynomials and splines,
additional types of regression models, other penalty methods
such as elastic net (important for microarray data) and fused
lasso (important for proteomic data), large-data versions, and
missing data handling.

Further development to create a commercial-quality product
includes more extensive testing, better documentation, devel-
opment of case studies, a graphical interface, and interfaces to
additional software such as S+ARRAYANALYZER and BIO-
CONDUCTOR.

Interns The lines between Insightful personnel and outside
collaborators may be blurred in one way — we have budgeted
for interns. This project should be particularly interesting to
graduate students doing research in regularized regression and
classification. Anyone interested is invited to contact the au-
thors.

5 Conclusion

We close on a positive note, with comments in the literature
about LARS: Knight (2004) is impressed by the robustness
of the LASSO to small changes in its tuning parameter, rela-
tive to more classical stepwise subset selection methods, and
notes “What seems to make the LASSO special is (i) its abil-
ity to produce exact 0 estimates and (ii) the ‘fact’ that its bias
seems to be more controllable than it is for other methods (e.g.,
ridge regression, which naturally overshrinks large effects)
. . . ” Loubes and Massart (2004) indicate “It seems to us that
it solves practical questions of crucial interest and raises very
interesting theoretical questions . . . ”. Segal et al. (2003) write
“The development of least angle regression (LARS) (Efron
et al. 2004) which can readily be specialized to provide all



LASSO solutions in a highly efficient fashion, represents a ma-
jor breakthrough. LARS is a less greedy version of standard
forward selection schemes. The simple yet elegant manner in
which LARS can be adapted to yield LASSO estimates as well
as detailed description of properties of procedures, degrees of
freedom, and attendant algorithms are provided by (Efron et al.
2004).”

The procedure has enormous potential, and the goal of this
project is to help realize that potential and bring the methodol-
ogy to the broader statistical community.

For current information please see the project webpage
www.insightful.com/Hesterberg/glars .
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