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Abstract the other methods. LARS is potentially revolutionary, offering
interpretable models, stability, accurate predictions, graphical

Least Angle Regression is a promising technique for varialgtPut that shows the key tradeoff in model complexity, and
selection applications, offering a nice alternative to stepwidgimple data-based rule for determining the optimal level of
regression. It provides an explanation for the similar beh&RMPplexity that nearly avoids the bias in hypothesis tests.

ior of Lasso {;-penalized regression) and forward stagewiggis idea has caught on rapidly in the academic community—
regression, and provides a fastimplementation of both. We gegoogle scholar search in March 2006 showed 114 citations
scribe a project for creating an open-source S-PLUS/R pagk{Efron et al. 2004).

ageglars for generalized least angle regression, extendi
thelars package of Efron and Hastie agtinpath of Park
and Hastie. We invite outside collaboration, and plan for f
ture versions of the package to provide a framework on whi
others can build.

i this article we sketch plans for a collaborative effort be-
H/_veen outside contributors and Insightful Corporation. The

Elal of this project is to produce high-quality software for clas-
sification and regression based on LARS.

In Section 2 we give an overview of LARS and its relationship

Keywords: regression, regularizatio,; penalty. to other regression methods. In Sections 3 and 4 we summa-
rize work in the first phase of this project and plans for future
1 Introduction work, respectively.
“I've got all these variables, but | don’t know 2 Background

which ones to use.”

Classification and regression problems with large numberdthis section we discuss various methods for regression with
candidate predictor variables occur in a wide variety of s¢nany variables. We begin with “pure variable selection” meth-
entific fields, increasingly so with improvements in data cdtds such as stepwise regression and all-subsets regression that
lection technologies. For example, in microarray analysis, ﬂﬁl@k predictors, then estimate coefficients for those variables
number of predictors (genes) to be analyzed typically far éx§ing standard criteria such as least-squares or maximum like-

ceeds the number of observations. lihood. In other words, these methods focus on variable selec-
. L tion, and do nothing special about estimating coefficients. We

Goals in model selection include: then move on to ridge regression, which does the converse—
e accurate predictions, it is not concerned with variable selection (it uses all candi-

¢ interpretable models—determining which predictors adate predictors), and instead modifies how coefficients are es-
scientifically meaningful, timated. We then discuss LASSO, a variation of ridge regres-

o stability—small changes in the data should not result #ion that modifies coefficient estimation so as to reduce some
large changes in either the subset of predictors used, tbefficients to zero, effectively performing variable selection.

associated coefficients, or the predictions, and From there we move to forward stagewise regression, an incre-
¢ avoiding bias in hypothesis tests during or after variakeental version of stepwise regression that gives results very
selection. similar to the LASSO. Finally we turn to least angle regres-

Older methods, such as stepwise regression, all-subsets> f&Y which connects all the methods.

gression and ridge regression, fall short in one or more \WE write LAR for least angle regression, and LARS to include
these criteria. Modern procedures such as boosting (Freu#dR as well as LASSO or forward stagewise implemented by
and Schapire 1997) forward stagewise regression (Hastie efeglst angle methods. We use the terms predictors, covariates,
2001), and the Lasso (Tibshirani 1996), improve stability aadd variables interchangeably (except we use the latter only
predictions, but can be slow. when it is clear we are discussing predictors rather than re-

Efron et al. (2004) show that there are strong connections pRonse variables).

tween these modern methods and a method theyezast an- The example in this section involves linear regression, but
gle regressionand that a single fast algorithm can be used moost of the text applies as well to logistic, survival, and other
implement all of them. They use the term LARS to collectivelyonlinear regressions in which the predictors are combined lin-
refer to least angle regression and the fast implementatioreafly. We note where there are differences between linear re-



Table 1: Diabetes Studyt42 patients were measured on 10 baseline variables; a prediction model is desired for the response variable

Y, a measure of disease progression one year after baseline. Predictors include age, sex, body mass index, average blood pressure, and si
different blood serum measurements. One goal is to create a model that predicts the response from the predictors; a second is to find a smaller
subset of predictors that fits well, suggesting that those variables are important factors in disease progression.

Patient Age Sex BMI BP Sl S2 S3 S4 S5 S6 Y
1 59 2 321 101 157 932 38 40 49 87 151
2 48 1 216 87 183 1032 70 3.0 39 69 75
3 72 2 305 93 156 936 41 4.0 47 85 141

442 36 1 196 71 250 1332 97 3.0 46 92 57

gression and the nonlinear cases. than predictors. Consider the model
Y=X0+e¢ Q)
Stepwise and All-Subsets Regression whereY is a vector of length, X ann by p matrix, 3 a vector

of lengthp containing regression coefficients, andssumed

We begin our description of various regression methods wifhP€ & vector of independent normal noise terms. In variable
stepwise and all-subsets regression, which focus on selecgR§ction, when some predictors are not included in a model,

variables for a model, rather than on how coefficients are e&i€ corresponding terms jhare set to zero. There are a num-
mated once variables are selected ber of ways to compute regression coefficients and error sums

of squares in both stepwise and all subsets regression. One
Forward stepwise regression begins by selecting a single pigssibility is to use the cross-product matrickéX, X'Y,
dictor variable which produces the best fit, e.g. the smallngy’y. Another is to use th€) R decomposition. Cross-
est residual sum of squares. Another predictor is then adgegqucts and? can both be computed in a single pass through
which produces the best fit in combination with the first, fojne gata, and in both cases there are efficient updating algo-
lowed by a third which produces the best fit in combinatiqithms for adding or deleting variables. Howev@R has bet-
with the first two, and so on. This process continues until SOR® numerical properties. See e.g. (Thisted 1988; Monahan
stopping criteria is reached, based e.g. on the number of pigo1: Miller 2002) for further information.
dictors and lack of improvement in fit. For the diabetes data

shown in Table 1, single best predictor is BMI: subsequé:rf?r nonlinear regressions, the computations are iterative, and
variables selected’ are S5 BP. S1. Sex. S2. S4 r;md g6, Itis not possible to fit all models in a single pass through the
1 L L 7 1 L - data.

The process is unstable, in that relatively small changes in the . L
data might cause one variable to be selected instead of anothaS€ Points carry over to LARS. The original LARS algo-

after which subsequent choices may be completely differerfith™ computesX’.X and X"Y" in one pass through the data;
using the@ R factorization would be more stable, and could

Variations include backward stepwise regression, which sta{{§o pe done in one pass. LARS for nonlinear regression re-
with a larger model and sequentially removes variables whigtlires multiple passes through the data for each step, hence
contribute least to the fit, and Efroymson’s procedure (EfroyRyeed becomes much more of an issue.

son 1960), which combines forward and backward steps.

These algorithms are greedy, making the best change at Eﬁ'ﬂbe Regression

step, regardless of future effects. In contrast, all-subsets re-

greshspn |s|.ex_:1aduzt|ve, congdenng altl) SUbeStS tOf vsrla}[blerrRE ad-hoc nature and instability of variable selection methods
cacti siz€, imited by a maximum number ot best subse S ( s led to other approaches. Ridge regression (Miller 2002;

the pr_edlctqr ;hat was best in isolation. The dlsa(_jvantag st squares. The coefficients minimizing a penalized sum of
that biases in inference are even greater, because it CO”S'dEEﬁﬁr es

much greater number of possible models. n

p p
In the case of linear regression, all computations for these step- Zm - Z Xiaiﬁj)z +0 Z 5?' @)
wise and all-subsets procedures can be computed using a sin- =1 J=1 i=1

gle pass through the data. This improves speed substantialfered is a positive scalary = 0 corresponds to ordinary

in the usual case in which there are many more observatiteast-squares regression. In practice no penalty is applied to



the intercept, and variables are scaled to variance 1 so thatcthefficient, anL; penaltyd > |3;| exerts the same force on alll
penalty is invariant to the scale of the original data. nonzero coefficients. Hence for variables which are most valu-

Figure 1 shows the coefficients for ridge regression graphica?g/e’ which clearl_y should b? in the model and where shrink-
as a function of); these shrink a8 increases. Variables moss € t.ovx_/ard zero s less d.e'_5|rable,lan penalty_ shnnks less.
correlated with other variables are affected most, e.g. S1 is important for providing accurate predictions of future
S2 have correlation 0.90. values.
In this case, BMI (body mass index) and S5 (a blood serum
S5 measurement) appear to be most important, followed by BP
N (blood pressure), S3, Sex, S6, S1, S4, S2, and Age. Some
curious features are apparent. S1 and S2 enter the model rel-
atively late, but when they do their coefficients grow rapidly,
in opposite directions. These two variables have strong pos-
itive correlation, so these terms largely cancel out, with little
effect on predictions for the observed values. The collinear-
ity between these two variables has a number of undesirable
consequences—relatively small changes in the data can have
strong effects on the coefficients, the coefficients are unstable,
predictions for new data may be unstable, particularly if the
new data do not follow the same relationship between S1 and
S2 found in the training data, and the calculation of coeffi-
00 ot Lo 1o cients may be numerically inaccurate. Also, the S3 coefficient
heta changes direction when S4 enters the model, ultimately chang-

. o ) ) ) ~ing sign. This is due to high (negative) correlation between S3
Figure 1:Coefficients for ridge regression (standardized varlablea)nd sS4

beta

Note that ag) increases, the coefficients approach but do not

equal zero. Hence, no variable is ever excluded from the moHetward Stagewise

(except when coefficients cross zero for smaller valued.of

In contrast, the use of ay, penalty does reduce terms to zerg\Nother procedure, forward stagewise regression, appears to
This yields the LASSO, which we consider next be very different from the LASSO, but turns out to have similar

' ' behavior.

This procedure is motivated by a desire to mitigate the nega-
tive effects of the greedy behavior of stepwise regression. In
aiepwise regression, the most useful predictor is added to the

odel at each step, and the coefficient jumps from zero to the
M%ﬁeast-squares value.

LASSO

Tibshirani (1996) proposed minimizing the residual sum
squares, subject to a constraint on the sum of absolute va
of the regression coefficients,”_, |3;| < t. This is equiva- _ _ _ _
lent to minimizing the sums of squares of residuals plugan Forward stagewise picks the same first variable as forward
penalty on the regression coefficients, stepwise, but changes the corresponding coefficient only a
small amount. It then picks the variable with highest corre-
P P lation with the current residuals (possibly the same variable as
Z(Yz‘ - Z Xmﬂj)Q +0 Z 1851 ) inthe previous step), and takes a small step for that variable,
i=1 i=1 j=1 and continues in this fashion.

n

Figure 2 shows the resulting coefficients. For comparison, ,[W@ere one variable has a clear initial advantage over other

right panel shows the coefficients from ridge regression, pl grlables there will be a number of steps taken for that variable.

ted on the same scale. To the right, where the penalties p@sequently, once a number of variables are in the moqlel, the
small, the two procedures give close to the same results. mB 8gedure tends to alternate between them. 'I_'he resulting co-
interesting is what happens starting from the left, as all co&flicients are more stable than those for stepwise.

ficients start at zero and penalties are relaxed. For ridge @exiously, an idealized version of forward stagewise regres-

gression all coefficients immediately become nonzero. For #ien (with the step size tending toward zero) has very similar

LASSO, coefficients become nonzero one at a time. Hermhavior to the LASSO despite the apparent differences. In the
the L, penalty results in variable selection, as variables withabetes example, the two methods give identical results until

coefficients of zero are effectively omitted from the model. the eighth variable enters, after which there are small differ-

Another important difference occurs for the predictors whid'ces Efron et al. 2004.

are most significant. Whereas dn penaltyd " 672 pushes There are also strong connections between forward stagewise
B; toward zero with a force proportional to the value of thegression and the boosting algorithm popular in machine



LASSO Ridge Regression
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Figure 2: Coefficients for LASSO and Ridge Regressibndnd L, penalties).

learning (Efron et al. 2004; Hastie et al. 2001). The difference
is not in the fitting method, but rather in the predictors used; in
stagewise the predictors are typically determined in advance,
while in boosting the next variable is typically determined on
the fly.

Least Angle Regression X2 D C
Least angle regression (Efron et al. 2004) can be viewed as a
version of stagewise that uses mathematical formulas to accel-

»

X1 B A

erate the computations. Rather than taking many tiny ste[b
with the first variable, the appropriate number of steps are
determined algebraically, until the second variable begins to
enter the model. Then, rather than taking alternating steps
between those two variables until a third variable enters thigure 3: The LAR algorithm in the case of 2 predictors. is the
model, the method jumps right to the appropriate spot. Figediction based solely on an intercept.= Y = (1 X1 + 32Xz is

ure 3 shows this process in the case of 2 predictor variablgg,ordinary least-squares fit, the projectiontobnto the subspace
for linear regression. spanned byX; and X». A is the forward stepwise fit after one step;

. ] . . the second step proceeds@b Stagewise takes a number of tiny
The first variable chosen is the one which has the smallest &aps fromo to B, then takes steps alternating between ¥heand

gle between the variable and the response variable; in Figure 3directions, eventually reaching; if allowed to continue it would

the angleCOX; is smaller thanCOX5,. We proceed in that reachC. LAR jumps fromO to B in one step, wheré is the point
direction as long as the angle between that predictor and filrevhich BC bisects the anglelBD. At the second step it jumps
vector of residualy” — v.X; is smaller than the angle betweetp C. The LASSO follows a path frond to B, then fromB to C.
other predictors and the residuals. Eventually the angle for &i§fe LAR agrees with LASSO and stagewise (as the step-size
other variable will equal this angle (once we reach pdirin for stagewise). In higher dimensions additional conditions are needed
Figure 3), at which point we begin moving toward the dire£2" €xact agreement to hold.

tion of the least-squares fit based on both variables. In higher

dimensions we will reach the point at which a third variable

has an equal angle, and joins the model, etc.

Expressed another way, the (absolute value of the) correlation
between the residuals and the first predictor is greater than



the (absolute) correlation for other predictors. Agicreases, extent for stagewise, variables can leave the model, and possi-
eventually another variable will have equal correlation with thody re-enter later, multiple times. Hence they may take more
residuals as the active variable, and joins the model as a sbkanp steps to reach the full model. Efron et al. (2004) test the
ond active variable. In higher dimensions additional variablésee procedures for the diabetes data using a quadratic model,
will eventually join the model, when the correlation betweetonsisting of the 10 main effects, 45 two-way interactions, and
all active variables and the residuals drops to the levels of thequares (excluding the binary variable Sex). LAR takes 64
additional variables. steps to reach the full model, the LASSO variation takes 103,
and stagewise takes 255. Even in other situations, when stop-

) ping short of the saturated model, LAR has a speed advantage.
Three remarkable properties of LAR There are three re-

markable things about LAR. First is the speed: Efron et dihe three methods have interesting derivations. LASSO is re-

(2004) note that “The entire sequence of LARS steps wifession with ari, penalty, a relatively simple concept; this is
m < n variables require®(m?3 + nm?) computations — the also known as a form of regularization in the machine learning

cost of a least squares fit om variables.” community. Stagewise is closely related to boosting, or “slow

_ ) _ learning” in machine learning. LAR has a simpler interpreta-
Second s that the basic LAR algorithm, based on the ge0mefiy than the original derivation; it can be viewed as in relation

of angle bisection, can be used to efficiently fit the LASSO aﬂSjNewton’s method. which makes it easier to extend to some
stagewise models, with certain modifications in higher dimeRsiinear models su,ch as generalized linear models
sions (Efron et al. 2004). This provides a fast and relatively '

simple way to fit LASSO and stagewise models.

Madigan and Ridgeway (2004) comments that LASSO has Haglated Work

little impact on statistical practice, due to the inefficiency of

the original LASSO and complexity of more recent algorithm&e begin with a review of other contributions in the literature,
(Osborne et al. 2000) and that this “efficient, simple algorithi@llowed by a summary of work needed.

for the LASSO as well as algorithms for stagewise regression

and the new least angle regression” are “an important contri-

bution to statistical computing”. Other penalty approaches Ridge regression uses aiy,

o N _ - . penalty, and LASSO aih; penalty. Zou and Hastie (2005b)
Third is the availability of a simpl€’, statistic for choosing propose the “elastic net”, penalized regression with a sum of
the number of steps, L, and L, penalties. This is useful in the analysis of microar-

n ray data, as it tends to bring related genes into the model as a
Cp = (1/62) Z(yi —9:)° —n+2k (4) group. It appears to give better predictions than LASSO when
i—1 predictors are correlated.

wherek is the number of steps ard is the estimated residualTIoshirani et al. (2005) propose the “fused LASSQ", involv-
variance (estimated from the saturated model, assuming tRét@ combination of ar; penalty on coefficients, and an

n > p). This is based on Theorem 3 in (Efron et al. 2004} penalty on the difference between adjacent coefficients.
which indicates that aftet steps of LAR the degrees of free-! Nis is useful for problems such as the analysis of proteomics
domn = ", cov(ji,;, Y;) is approximatelyk. Using this data, where there is a natural ordering of the predictors (e.g.
C, statistic, one would stop after the number of stégthat Measurements on different wavelengths) and coefficients for
minimizes the statistic. nearby predictors should normally be similar; it tends to give

) locally-constant coefficients.
Zou et al. (2004) extend that result to LASSO, showing an un-

biased relationship between the number of terms in the moéfn @nd Lin (2006) discuss “grouped LASSO" and “grouped

and degrees of freedom, and discags AIC and BIC crite- LARS”, for use when some predictors have multiple degrees
rion for model selection. of freedom, such as factor variables.

There are some questions about thls statistic (Ishwaran

2004; Loubes and Massart 2004; Madigan and Ridgew@ynlinear models The original LARS method is for lin-
2004; Stine 2004), and some suggest other selection critegig; regression. Several authors have discussed extensions to
especially cross-validation. other models, including Cox regression (Gui and Li 2005; Park
and Hastie 2006b), generalized linear models (Madigan and
Comparing LAR, LASSO and Stagewise In general in R’_idgeway 2004; Park and Hz.istie 2006b), robust linear regres-
higher dimensions native LAR and the least angle implemt;ﬁj]c-)n (Rpsset and Zhu 2004a; Van Aelst et al. 2005), exponen-
tation of LASSO and stagewise give results that are simi%?I family modeI§ (Ro§set 2005), and support vector machines
but not identical. When they differ, LAR has a speed adva hu et al. 2003; Hastie et al. 2004).

tage, because LAR variables are added to the model, néveme additional authors discuss general strategies for solu-
removed. Hence it will reach the full least-squares solutidigns in nonlinear models. Roth (2004) discusses a method for

using all variables, i steps. For LASSO, and to a greatdteratively reweighted least squares (IRLS) applications. Ros-



set and Zhu (2004b) discuss conditions under which coefimeter (the number of steps, or magnitude offth@enalty);
cient paths are piecewise linear, and Rosset (2005) discufiseaelastic net, and fused LASSO require multiple tuning pa-
method for tracking curved coefficient paths; however, the akmeters. Work is needed to investigate and compare meth-
gorithm requires computing a gradient and Hessian at eaclod$ includingC,, AIC, BIC, cross-validation, and empirical
many small steps, and so is poorly suited for large problerBayes. The theoretical work on tkig, statistic to date is un-
Kim et al. (2005b) propose a gradient approach particuladgr the null hypothesis that no coefficients are nonzero; how is
useful for high dimensions. it affected when some coefficients are nonzero?

Work is needed to develop estimates of bias, standard error,
_ _ ~ and confidence intervals, for predictions, coefficients, and lin-
Work needed LARS has considerable promise, offeringar combinations of coefficients. Are predictions sufficiently
speed, interpretability, relatively stable predictions, close dfbse to normally-distributed to allow for the use to€onfi-
unbiased inferences, and nice graphical presentation of de@ice intervals? Coefficients are definitely not normally dis-
whole sequence of coefficients. But considerable work is tibuted, due to a point mass at zero; but when coefficients are
quired to turn this promise into widely-used reality. A numsufficiently large, might intervals still be useful?
ber of different algorithms have been developed, for linear . . . .
. e : . Work is also needed to look at the signal-to-noise ratio for
nonlinear models. These differ in speed, numerical stability, . .

. . . ﬁ(ese methods, and to compare to alternatives. A good signal-
accuracy (in the nonlinear case, how well do algorithms traﬁ)-noise ratio would be a strong impetus for the statistical com-
the exact curved coefficient paths), collinearity, and handli nitv to use the methods gimp
of details such as variables that are nearly tied in importance. y '

Work is needed to compare the algorithms, with artificial aiiork is needed to develop numerical and graphical diagnostics
real data, with a variety of sizes — large and smadindp. to interpret regression model output.

Speed is an issue for nonlinear models, particularly if crdsially, to truly realize the promise of these methods, they
validation is used for model selection, or bootstrapping for imust be encoded in robust and easy-to-use software suitable
ferences. In the linear regression case the cross-product faaa broad base of users, not just sophisticated academic re-
trices orQ R decomposition required for computations can ksearchers.

calculated in a single pass through the data. In contrast, for

the nonlinear models, fitting each subset of predictors requires

multiple passes through the data. 3 Phase | Work

Alternate penalties such as the elastic net and fused LASSO . ] .

offer advantages for certain kinds of data, in particular mfRur work on this project falls into two phases of NIH
croarrays and proteomics; work is needed to create algoritH#Rding—Phase | to demonstrate proof-of-concept was com-
using these penalties in nonlinear models, to investigate tHifted in March 2006, and Phase Il for more substantial devel-
properties, and to provide guidance on choosing the tunfmnentis just beginning.

parameters—in contrast to LAR and LASSO, which each havgere were three technical goals in Phase I:

only a single tuning parameter, these procedures have two or . - .
more e extension to logistic regression

o allow factor variables with more than two levels

The original LARS methodology is limited to continuous or e develop efficient and numerically stable computation

binary covariates. The grouped LASSO and LAR are one ex- . , ,
Y group : %)%ese goals were achieved; we omit details for reasons of

grees of freedom such as polynomial and spline fits. WotRace: We also made progress in dealing with linear depen-
is needed to investigate these methods, and to extend ther%e@ce' and speed improvements.
nonlinear models. The most striking aspect of Phase | was our decision to pro-
ce an open-source library that will run in both B and
%rather than a closed-source version for Ss®only. This
fmakes it easier to benefit from open-source work done in the
ademic community, and improves our ability to work col-
oratively with outside contributors.

There are a number of practical considerations in some
plications that need attention, including order restrictio
(e.g. main effects should be included in a model before
teractions, or linear terms before quadratic), forcing cert
terms into the model, allowing unpenalized terms, or apply-
ing different levels of penalties to different predictors basé@d\RS is an area of active research. Much of the academic soft-
on an analyst's knowledge. For example, when estimatingvare for LARS and Lasso has been released as $spack-
treatment effect, the treatment term should be forced into tiges lasso2 (Lokhorst et al. 1999)brdgrun  (Fu 2000),
model and estimated without penalty, while covariates sholdds (Efron and Hastie 2003)) or R packagegnipath

be optional and penalized. (Park and Hastie 2006akglasticnet (Zou and Hastie

A variety of work is needed under the broad category of infe?rQOS"")'gIaSSO (Kim et al. 2005a)).
ences, including tuning parameters and more traditional infersightful is working to facilitate the use of R packages in
ences. LARS and LASSO require the choice of a tuning pa-PLuUs; this is a key feature of the next release of 84B,



which entered beta testing in April 2006. Our prototypaized linear models, ancbxlars  for proportional hazards
“S+GLARS ibrary is based in part otars andglmpath , regression. These front ends should handle initial data mas-
runs in both S-Pus and R, and is released under an opesaging (subsetting, exclusion of missing values if that option
source license, GPL 2.0 (GNU Public License), to allow otis chosen), selection of variables according to a user-specified
ers to build on the framework we develop. formula, processing of factor variables, polynomials, spline
ms, interactions, etc., then call a fitting routine. In con-

This decision was greeted enthusiastically by key potent . : .
g y Dy K€y P st to the existing academic software, where functions are

collaborators, and a large number of researchers in the e{F@ ed ori iiv for th . f the devel th
have requested the prototype library produced during Phasgrgamze primarily for the convenience ot the developer, the
ront-end functions should mimic the user interface of func-

tions analysts are used to, suchlms glm, andcoxph , for

Prototype Library: S+GLARS We created a software ji-linear, generalized linear, and cox regression, respectively.
brary that runs in both S-PLUS and R. The main fitting rodhe fitting routines provide an opportunity for outside collab-

tines in the library are: oration; they may be written by anyone, provided they fol-

e lars fit.eh the original Efron-Hastie algorithm, inlow certain guidelines (to be developed) for input and out-
S: LAR, LASSO and forward stagewise put. In the prototype library, one of the fitting routines is

e lars fit.fortran FORTRAN version of the origi- lars.fit.eh ; the original LAR_S algorithm as coded by
nal algorithm, LAR, LASSO and forward stagewise, 70N and Hastie (Efron and Hastie 2003).

o lars.fit.s more accurate algorithm, in S; LAR andCollaborators may also provide routines for plotting, diagnos-
LASSO, tics, or other computations.

e glars.fit.s logistic regression, in S; LAR,

Lo . . fter the first release of the platform, we plan to refine it based
e glmpath logistic, linear, and Poisson regression, calls . .
L on feedback from collaborators, and to implement extensions
FORTRAN for core calculations; LASSO, and : :
: : uch as better support for factors, polynomials and splines,
e coxpath Cox proportional hazards regression, calls, ... .
. additional types of regression models, other penalty methods
FORTRAN for core calculations; LASSO. . ; .
such as elastic net (important for microarray data) and fused
Thelars function provides a user-friendly front end to théasso (important for proteomic data), large-data versions, and
three fitting routines for the linear case. It allows the user foissing data handling.

specify variables to use by means of a formula, rather than “Plrther development to create a commercial-quality product

structing a design matrix manually. This function supports fac- . . .
: ; : m((:Judes more extensive testing, better documentation, devel-
tor variables using the dummy variable approach (the secon

aporoach to factors currently requires callians fit.s opment of case studies, a graphical interface, and interfaces to
diezctly) y req ags. 1. additional software such as SRRAYANALYZER and Bo-

CONDUCTOR

There are also some routines for plotting and nicely-formatted

output of the fitting results, or further analysis such as cross-

validation. Interns  The lines between Insightful personnel and outside
collaborators may be blurred in one way — we have budgeted
for interns. This project should be particularly interesting to

and Hastie 2006b). The plotting, printing, and cross-validatigradqate §tudents domg research'ln'regularlzed regression and
C %ssmcatlon. Anyone interested is invited to contact the au-

routines are also largely from those libraries. We have m
some improvements, ranging from the obvious (allow spacé)rs'
for axis labels so they are not off the page) to more subtle

(avoiding programming constructions that fail for some user 5 Conclusion
inputs).

The lars.fit.eh function is from (Efron and Hastie
2003); theglmpath andcoxpath functions are from (Park

We close on a positive note, with comments in the literature
4 Phase Il about LARS: Knight (2004) is impressed by the robustness

of the LASSO to small changes in its tuning parameter, rela-
tive to more classical stepwise subset selection methods, and

This is a rapidly developing field, with the possibility of SUbﬁotes “What seems to make the LASSO special is (i) its abil-
stantial outside collaboration from academics. Hence our in 7 to produce exact O estimates and (ii) the ‘fact’ that its bias
tial efforts will be focused on creating an attractive platforlﬁ/

. eems to be more controllable than it is for other methods (e.g.,
for collaborative work. ridge regression, which naturally overshrinks large effects)
The Phase | prototype is not easily extendable. Our goal is” Loubes and Massart (2004) indicate “It seems to us that
to create a framework, in the form of an $4/%/R library, it solves practical questions of crucial interest and raises very
that is attractive for outside collaborators to work in and ebteresting theoretical questions ...”. Segal et al. (2003) write
tend. This framework should include appropriate front-efiihe development of least angle regression (LARS) (Efron
functions, e.glars for linear regressiomglars for gener- et al. 2004) which can readily be specialized to provide all



LASSO solutions in a highly efficient fashion, represents a makhorst,  J.,  Venables, B., and Turlach, B. (1999).

jor breakthrough. LARS is a less greedy version of standard hasél<l)25 A L1 dconlitt;a'“?d/ ﬁWESt'Tat'O“h | Routines

forward selection schemes. The simple yet elegant manner in MP/Www.maths.uwa.edu.aul"berwin/software/lasso.htm

which LARS can be adapted to yieId LASSO estimates as \A)Eqpbes, J.-M. and Massart, P. (2004). Discussion of “Least Angle Regression”
. e : by Efron et al.Annals of Statistics32(2):460—465.

as detailed description of properties of procedures, degrees of y Efron etal.Annals of Stafistics32(2)

; : digan, D. and Ridgeway, G. (2004). Discussion of “Least Angle Regres-
g(e)gg;)m and attendant algorithms are provided by (Efron et sion” by Efron et al Annals of Statistics32(2):465-469.

Miller, A. (2002). Subset Selection in Regressidbhapman & Hall, second
The procedure has enormous potential, and the goal of this edition.
project is to help realize that potential and bring the method®lenahan, J. E. (2001)Numerical Methods of Statistic€ambridge Univer-
ogy to the broader statistical community. sity Press.

. . . sborne, M. R., Presnell, B., and Turlach, B. A. (2000). A new approach
For current information please see the project Webpa%eb to variable selection in least squares problem$A J. Numeri. Anal.

www.insightful.com/Hesterberg/glars . 20:389-403.
Park, M. Y. and Hastie, T. (2006aImpath: L1 Regularization Path for Gen-

eralized Linear Models and Proportional Hazards Madé& package
version 0.91.

) ) ) Park, M. Y. and Hastie, T. (2006b). L1 Regularization Path Algorithm for
This work builds on software by Trevor Hastie, Brad Efron,  Generalized Linear Models. Unpublished.
and Mee Young Park. We thank our consultants Mark Seg@dsset, S. (2005). Following Curved Regularized Optimization Solution
Ji Zhu, and Saharon Rosset, as well as a number of others Paths. In Saul, L. K., Weiss, Y., and Bottou, L., editofglvances

who provided feedback on Phase | work and suggestions for in Neural Information Processing Systems fi@ges 1153-1160, Cam-
Phase Il bridge, MA. MIT Press.

) Rosset, S. and Zhu, J. (2004a). Discussion of “Least Angle Regression” by
This work was supported by NIH under NIH SBIR Phase |  Efron et al. Annals of Statistis32(2):469-475.

1R43GMO074313-01 and Phase Il 2R44GM074313-02 awarfi§sset, S. and zhu, J. (2004b). Piecewise Linear Regularized Solution Paths.
submitted.
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