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Abstract

In 1811-1812 three great (8.0+) earthquakes occurred
near New Madrid, Missouri. We estimate coseismic de-
formation in this area using stream elevation data from
topographic maps. Streams have a natural profile, the
gradient of which depends on the resistance of underly-
ing sediment and the volume of stream flow. If tectonic
processes elevate the upstream end of a segment a dif-
ferent amount than the downstream end, the stream will
attempt to return to its natural gradient by incising, ag-
grading, or altering its sinuousity. This adjustment takes
time, so deviations from the natural gradient may indi-
cate geologically recent deformation. We use penalized
regression splines to estimate the natural stream profile
and the deformation of the ground surface. Estimation of
the natural profile and deformation is based on nonpara-
metric regression of the form y� � y� � f�x��� f�x��.

Keywords: B-splines, Geomorphology, Regression
splines, SL index, Tectonics, Tensor product, Ridge Re-
gression.

1 Introduction

A number of different features of the landscape have
been used to estimate coseismic deformation that has oc-
curred prior to recent geodetic surveys, including fault-
bounded mountain fronts, offset stream channels, or up-
lifted coastlines along active plate margins. Use of such
features has been unsuccessful in continental interiors
because the terrain in such areas typically has little re-
lief and faults rarely rupture the surface. For example,
our study area is within the New Madrid Seismic Zone
(NMSZ), in an area mantled by more than 1 km of allu-
vial sediment that obscures crustal displacement.

Our purpose in this article is to describe a method
of using topographic information for stream networks to
identify crustal deformation. Stream channels have natu-
ral gradients that primarily depend on resistance to flow
(dependent on bedrock or sediment type and properties)
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Figure 1: Earthquake epicenters of New Madrid region
from 1974 to 1991.
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Figure 2: Surface contours (feet) in the Lake County Up-
lift Region, from Russ (1982).

Figure 3: Watersheds analyzed in this study.

and volume of water and sediment flowing in the stream
(Schumm, 1977, 1983). The gradient is steeper near the
headwaters, and less steep downstream where the flow
volume is greater. If tectonic processes change the gradi-
ent of an alluvial stream segment by elevating the up-
stream end of a segment more or less than the down-
stream end, the stream will attempt to return to its natural
gradient, by incising, aggrading, or altering its sinuosity
(Ouchi 1985). However, that process takes time, so that
deviations of streams from their natural gradients could
indicate recent tectonic deformation. Merritts (1987) and
Merritts & Vincent (1989) found that stream networks
are sensitive to slow rates of surface uplift and tilt, even
where faults have not ruptured the surface. The focus of
this article is on statistical methodology; further discus-
sion of our results is in Merritts & Hesterberg (1994).

We begin with a description of our study area in Sec-
tion 2. In Section 3 we describe a procedure for estimat-
ing the natural profile of streams in a study area, regard-
less of tectonic disturbances. In Section 4 we describe
how to estimate the natural profile and surface deforma-
tion simultaneously. This regression procedure can ex-
tract a subtle signal from noisy data.

The procedures in Section 3 and 4 are based on using
nonparametric regression from difference data, in which
the response variable cannot be observed directly; in-
stead the difference in values of the response variable
is observed for pairs of values of the explanatory vari-

able(s).

2 Lake County Uplift Area

In 1811 and 1812 the three largest historic earthquakes
(magnitude 8.1-8.3) in the North American continental
plate occurred in the NMSZ. Figure 1 shows the loca-
tion of recent small earthquakes in this area, recorded by
St. Louis University and the Center for Earthquake Re-
search and Information; these may be aftershocks of the
great earthquakes. Our study area is is the Lake County
Uplift Area (LCU), a region within the NMSZ where sur-
face deformation is known to have occurred. Russ (1982)
used warped stream levies and other evidence to estimate
the uplift pattern shown in Figure 2.

We digitized topographic data for 16 small watersheds
that drain the LCU, shown in Figure 3, obtaining map
coordinates (x and y), elevation z, and arclength of each
segment l. We worked from 1:24,000 scale topographic
maps obtained from the U.S. Geological Survey, which
have a contour interval of five feet, using custom soft-
ware DigiStream which is available from the authors.

One of the smaller watersheds is shown in Figure 4.
There are seven segments in this watershed, several of
which have subsegments, where the segment crosses a
contour line. Segment 7 is the outlet of the watershed.
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Figure 4: Example watershed with seven segments.

3 Natural Profile Estimation

We describe in this section a procedure for estimating the
natural profile of streams in a study area, using nonpara-
metric regression. We assume that the flow at any point
on a stream network is a smooth function of (but not nec-
essarily proportional to) the length of all segments up-
stream of the point. For comparison, the SL index (Hack
1973), the standard procedure for analyzing stream gra-
dients, assumes that flow is a function of the length of the
single longest sequence of segments upstream of a point.
The SL index also assumes that the profile is given by a
parametric curve z � a� b log�L�.

Figure 5 shows a scatterplot of the elevation drop
of feeder segments (segments with nothing flowing into
them, e.g. segments 1-4 in Figure 4) vs the length from
the head of the segment. Each subsegment of a feeder
segment is represented, by plotting the elevation drop
from the beginning of the segment to the end of the sub-
segment, vs the length of the stream from the beginning
of the segment to the end of the subsegment. It is ev-
ident that there is considerable variability in the eleva-
tion drops, but nonparametric regression, or scatterplot
smoothing, may be used to obtain an estimate of the pro-
file. Two such estimates are shown on the plot. A poly-
nomial of degree 4, fitted by least-squares with no inter-
cept (so the curve passes through the origin), produces
an unacceptable estimate of the profile. A much better
curve is obtained by a (cubic) smoothing spline with the
equivalent of four degrees of freedom; see Hastie & Tib-
shirani (1990) for a discussion of this and other smooth-
ing procedures, and of equivalent degrees of freedom.
See also de Boor (1978) for a more complete discussion
of splines. We also perform a square-root transformation
on L prior to the smooth, and use an artificial point at the
origin with weight 1000 to ensure that the curve passes
near the origin.

The curves in Figure 5 are estimated using only feeder
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Figure 5: Elevation drops for feeder segments, with two
estimates of the natural profile. L is the length of the seg-
ment from the head to the end of the current subsegment.
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Figure 6: Longitudinal view of all segments in example
watershed.

segments. Adding downstream segments results in lon-
gitudinal profiles like the one shown in Figure 6. The
beginning elevation of segment 5 matches the end eleva-
tion of segments 1 and 2, and the value of L at the up-
stream end of segment 5 matches the sum of lengths of
segments 1 and 2. We can move the individual segments,
or even subsegments, up or down, without changing the
gradients. In Figure 7 the subsegments of the sample wa-
tershed are translated vertically so that they begin on the
estimated profile from Figure 5. For this particular wa-
tershed the early subsegments are less steep, and the later
subsegments steeper, than the natural profile estimated
using feeder segments from all watersheds.

In order to incorporate information from downstream
segments in estimating a natural profile we must aban-
don simple scatterplot smoothing, because downstream
segments consist of pairs of observations which may
be translated vertically arbitrarily. The natural profile
should reproduce the observed elevation drops as closely
as possible, rather than the elevations. We estimate the
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Figure 7: Longitudinal profile of example watershed,
curve estimated from feeder segments from all water-
sheds.

profile f using a model of the form

drop � z� � z� � f�L��� f�L�� � � (1)

where f is a smooth nonparametric function (with
f��� � �), L� and L� are the values of L at the upstream
and downstream ends of the subsegment, and z� and z�
are the elevations at the ends of the subsegment.

One way to fit this model would be to include each
subsegment in the regression as two observations, one
for the upstream and one for the downstream end, with
a single dummy variable to allow for vertical translation,
giving a model of the form

z�i�j� � f�L�i�j�� �

nX

k��

�kDk � � (2)

where j � �� � for the upstream and downstream ends of
a subsegment, and Di is a dummy variable which is one
for observations �i� �� and �i� �� and zero otherwise, i �
�� � � � � n. In a dataset with n subsegments, this would
require a regression on �n observations using n dummy
variables. This would be computationally expensive to
fit using a standard package, but might be feasible using
a backfitting procedure (Hastie & Tibshirani 1990).

Our approach is to use regression splines, in particular
B-splines. We use cubic B-splines sj , which form a basis
for the set of cubic splines, i.e. any cubic spline can be
represented in the form

f�x� � �� �

JX

j��

�jsj�x�� (3)

Regression splines are described in Hastie & Tibshirani
(1992), and implemented in S-Plus (Chambers & Hastie
1992) as well as in other software such as Matlab. We
choose the degrees of freedom J and the knots in ad-
vance, and transform L prior to computing the splines,
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Figure 8: Estimated natural profile, using all segments
and nonparametric estimation on difference data.

e.g. by a square root transformation. Then (1) reduces to
a regression of the form

z� � z� �

JX

j��

�j�sj�
p
L��� sj�

p
L��� � � (4)

which can easily be estimated by ordinary linear regres-
sion; the �i� j� element of the design matrix is the differ-
ence sj�

p
L�i���� � sj�

p
L�i����. There is no intercept

in the regression. For comparison, in fitting a polyno-
mial f�x� �

PJ

j�� �jx
j to difference data, the regres-

sion would be of the form

�z � z� � z� �

JX

j��

�j�x
j
� � x

j
�� � � (5)

We also use a dummy variable, which is 1 for feeder
subsegments and 0 for other subsegments. This allows
the estimated curve to drop sharply near L � �. The
resulting curve is shown in Figure 8. The gradient is very
steep at first, then gradually levels off.

4 Deformation Estimation

Deformation of the earths surface during the 1811-1812
earthquakes caused the upstream ends of some segments
to be elevated a different amount than the downstream
ends, so those segments became more or less steep than
their natural profile. We assume that streams have not
had time to adjust their channels to return to their natural
profile; this is more likely to be true for smaller streams,
such as we analyze, than for larger streams. Then the
actual drop of any segment should consist of the drop
determined by the natural profile, plus the differential el-
evation gain from tectonic deformation. Our model for
this is

�z � f�L��� f�L�� � g�x�� y��� g�x�� y�� � � (6)



Figure 9: Tensor product B-splines. The product spline
is gm�k�x� y� � sm�x�Sk�y�.

where �x�� y�� and �x�� y�� are the coordinates (lon-
gitude and latitude) of the upstream and downstream
ends of a segment, and g represents the deformation sur-
face. We represent g using tensor product splines — if
sm�x��m � �� � � � �M and Sk�y�� k � �� � � � �K are B-
splines in x and y, then the tensor product splines are
gm�k�x� y� � sm�x�Sk�y�. One such product spline is
shown in Figure 9. In addition, because B-splines are
normally used in a regression with an intercept, the terms
gm���x� y� � sm�x� and g��k�x� y� � Sk�y� should also
be used in a regression. Then g is of the form

g�x� y� � �� �
X

m�k

�m�ksm�x�Sk�y� (7)

where the double sum is for m � �� � � � �M and k �
�� � � � �K with the exception of m � �, k � �. Incor-
porating this into the regression results in a model of the
form

�z �
PJ

j�� �j�sj�
p
L��� sj�

p
L��� � �I�feeder�

�
P

m�k �m�k�gm�k�x�� y��� gm�k�x�� y��� � �(8)

There are some difficulties with this procedure. If the
knots in x and y are placed in a reasonably fine grid then
the number of product splines, and degrees of freedom in
the regression, can be very large. There may be problems
with colinearity or near-colinearity. Indeed, because the
streams are not located uniformly on a rectangular grid,
some of the product splines may be zero for all observed
segment ends, in particular those product splines which
have their peak near the corners of the grid. There are
two add-hoc remedies and a general remedy for these
problems.

The first ad-hoc remedy is that product splines which
are zero on observed coordinates may be omitted from
the regression. The second is to transform the coordi-
nates so that the segment ends more nearly fill out a rect-
angle on the transformed coordinate system. Rotations

would be useful if a study area has a long axis which lies
in other than a north-south or east-west direction. Our
streams have a long axis in the north-south direction al-
ready, but they do follow a banana shape rather than a
rectangular shape. We use a transformation of the form
x� � x� ay� by�, with a and b chosen to eliminate the
curve of the banana.

The more general remedy is to use ridge regression.
Instead of ordinary least squares, the parameters in (8)
can be chosen to minimize

nX

i��

���i � �
X

m�k

��m�k�
�� (9)

where � is a penalty factor. The amount of penalty can
be varied, to produce smoother and flatter surfaces at
one extreme, or unflattened and unstable surfaces at the
other. We have chosen a � that appears to give reasonably
smooth estimates of deformation; the result is shown in
a contour plot in Figure 10. Uplift is generally greatest
along the middle (from west to east) of the study area,
with low areas about one-quarter and one-half the dis-
tance from north to south. The pattern exhibits four dis-
tinct high areas, three of which generally coincide with
areas of uplift determined by Russ (1982). However,
fine details might result from the inherent randomness
in stream channel elevations or the limitations of work-
ing from maps with 5-foot contour intervals in a region
of very little relief. The contours are less accurate on
the edges of the study area. The overall amount of uplift
shown is less than determined by Russ (1982), probably
because of the flattening effect of the ridge regression.

We are investigating a more general ridge regression
procedure, in which the penalty term would be based on
the smoothness of the deformation estimate. This crite-
rion is motivated by the energy criterion that determines
thin-plate splines. The penalty can be expressed as a
quadratic function function of the regression coefficients,P

u

P
v cu�v�u�v, for some constants c, where u and u

represent pairs of indices �m� k�.

5 Summary and Conclusions

A bootstrap analysis (not described here) shows that the
deformation estimate is highly statistically significant.
Comparison of the deformation estimate with the topog-
raphy shows that the deformation estimation procedure
is not simply reproducing the contours of the land. Thus
it appears that the procedure is finding some real effect
in the landscape, and the agreement with the contours of
Russ suggests that it is the recent tectonic deformation.
We are in the process of testing the method in other study
areas.



Figure 10: Estimate of surface deformation g (feet).

This procedure can be extended in a number of ways.
Differential flow resistance could be estimated by adding
a spatial term to the model (6), of the form �L� �
L��h�x� y�. Because the procedures described here are
based on linear regression they can be made robust in the
usual manner, using iterative weighted least squares to
reduce the weights on observations with large residuals.
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