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Abstract:

We point out connections between the bootstrap and
empirical likelihood, and indicate how the other pre-
sentations in the session “The Bootstrap and Empir-
ical Likelihood” at the 1997 Joint Statistical Meet-
ings fit into this framework.

1. Empirical Likelihood for a mean

The goal of this article is to point out connections be-
tween the bootstrap and empirical likelihood (EL).
We consider only univariate statistics, where the
connections are clearest.

We assume that z;,...,x, are an i.i.d. sample,
and wish to test Hy : 4 = pg. The principle behind
EL [11] is to restrict consideration to distributions
with support on the observed data, then do maxi-
mum likelihood inference. This implies that we may
describe a distribution in terms of the probabilities
wi, ..., w, the distribution assigns to the observed
data. The maximum likelihood distribution satis-
fying Hy is obtained by maximizing the likelihood
[T, w; subject to the constraints

wiZO,Zwizl,Zwixi:ug. (1)

The solution can be written in the form
c

T 1—t(z; —7)

(2)

where c is a normalizing constant and ¢ is a “tilting
parameter”. The choice t = 0 corresponds to uni-
form weights w; = 1/n, the unrestricted maximum
likelihood estimate; the ¢ that solves Y w;z; = o
is found numerically. Figure 1 shows the resulting
weights in an example where the unweighted sample
mean is below pug; t is positive and larger weights
are assigned to the larger values of x to make the
weighted mean equal ug. Finally, Hy is rejected in
favor of H, : p # o if

—2log([wi/ [T/ >3 @)

which gives asymptotically correct inferences under
general conditions [11].
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Figure 1: Empirical Likelihood Weights

The first connection with the bootstrap is pro-
vided by [15], who suggested using the bootstrap to
to calibrate the EL procedure, rather than rely on
the asymptotic arguments underlying (3). In an-
other presentation in this session, Lee [9] suggest
doing the same thing for a variation of EL. [5] use
bootstrap estimation of Bartlett correction factors
for EL, and [12, 14] use bootstrap calibration for
likelihood ratio tests.

2. Bootstrap Tilting for a mean

We turn now to the bootstrap tilting (BT) test for
a single mean. This is based on [3], though we con-
sider hypothesis testing to emphasize connections
with EL. One begins by choosing a least-favorable
family; the choices in [3] correspond to either expo-
nential tilting:

w; = cexp(t(x; - 7)) (4)

or (2), which we call “maximum likelihood tilting”.
As in EL, ¢t is chosen to satisfy > w;z; = po. How-
ever, the decision to reject Hy is based on a p-value
estimated by weighted bootstrap sampling

p=PL(X*>7)

where P, indicates bootstrap sampling with prob-
abilities w = (wy,...,w,) and X* is a bootstrap
sample mean. Thus, where EL relies on asymptotic
results, BT estimates the null distribution for X, us-
ing the empirical maximum likelihood distribution in
place of the unknown true distribution.



3. Bootstrap Tilting and Empirical
Likelihood for nonlinear statistics

BT and EL extend to nonlinear statistics in similar
ways. Suppose that the statistic of interest, 6, is
symmetric in its arguments. Restricting considera-
tion to distributions with support on the empirical
data, we may express 6 as a function of the proba-
bilities, # = 6(w). Derivatives of § with respect to
the weights,

U;(w) = 151(1) e 1O((1 —e)w +€6;) —B(w))  (5)

are know variously as empirical influence function,
infinitesimal jackknife, or score function. They may
be calculated analytically or approximated numeri-
cally using a finite value of €. These derivatives are
used in (2) or (4) in place of (z; — Z). One variation
of both BT and EL involves evaluating the deriva-
tives only once, at the vector of uniform weights

wo = (1/n,...,1/n)
then tilting using one of:

W — { cexp(tU;(wo))
¢ C(l — tUi(Wo))_l.

Actually solving the optimizations underlying either
EL or BT corresponds to tilting with

- { cexp(t(Us (w) = 0))
T\ el - HU(w) ~ T) !

where the derivatives are continually updated. In
any case, t is chosen to solve 6(w) = 6.

[15] shows in the EL context that the derivatives
need not be continually updated, that little is lost by
alternating a small number of times between evaluat-
ing the derivatives and solving the constraints. This
could be done for BT as well. [6] discusses meth-
ods in a bootstrap context that correspond to up-
dating derivatives once, using either finite difference
methods or linear regression with a single quadratic
interaction term.

4. What kind of tilting?

Early BT work provides little basis for choosing be-
tween tilting methods. At one extreme is exponen-
tial tilting using derivatives evaluated once; this is
fastest, and is used by [3] in the BT context and
Lee [9] in EL with bootstrap calibration, in another
presentation in this session. At the other extreme
is maximum likelihood tilting, with updated deriva-
tives. That the EL derivation results in ML tilt-
ing with updated derivatives provides some heuris-
tic justification for using these variations in BT.

There are substantive reasons for these choices as
well. First, updating the derivatives at least once
results in more conservative inferences—wider con-
fidence intervals and smaller Type I error—which
are usually more accurate in practice.

Second, using ML tilting also results in more con-
servative inferences. Note that the Taylor-series ex-
pansions of (2) in ¢ has a quadratic term double that
of (4). Figure 2 shows how the ML weights are larger
at both extremes of the data (and smaller in the mid-
dle, because the weights are normalized). Bootstrap
sampling using ML weights results in greater vari-
ance, hence wider confidence intervals and smaller
type I error.
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Figure 2: ML vs. exponential tilting

Furthermore, ML tilting has a nice unbiasedness
property—when Hj is true and w is obtained by ML
tilting, then

E;, (h(X*)) =Y wih(z;) = E(W(X)) + O(n™?)

for any nonlinear function h, subject to regularity
conditions ([7]). In particular, the variance of the
sample mean under weighted bootstrap sampling bi-
ased by a factor of only O(n~2), in contrast to n~*
for usual bootstrap sampling.

[2] obtained an important result, that BT confi-
dence intervals are second-order correct (one-sided
coverage errors are O(n~') under general circum-
stances, for both linear and nonlinear statistics. This
is the same asymptotic accuracy as for other leading
bootstrap procedures. We conjecture that BT infer-
ence using ML tilting and updated derivatives has
better finite-sample accuracy than other bootstrap in-
tervals, due to the small bias for the variance. This
should be tested in simulation studies.



5. Importance Sampling Reweighting

A very efficient implementation of BT [3] does not in
use involve weighted bootstrap sampling, but rather
unweighted bootstrap sampling, adjusted by impor-
tance sampling reweighting.

In importance sampling, a single set of simulation
observations from a single “design” distribution g¢
may provide estimates under multiple “target” dis-
tributions f, using different weights. In terms of
expected values,

/G(x)f(m)dm - /O(w)%g(x)dw

By sampling from g, and reweighting observations
using the ratio f(x)/g(x), we obtain weighted sam-
ples for f. ([7] discusses variations on this basic
rule.) In the BT context, g corresponds to un-
weighted bootstrap sampling, and different f’s to
different values of the tilting parameter ¢ and hence
w.

Importance sampling reweighting is used in boot-
strap likelihood [1], parametric bootstrap recycling
[10], Ventura’s presentation in this session on non-
parametric bootstrap recycling [13], and a bootstrap
diagnostic procedure under investigation by Hinkley
and me, which studies sensitivity of bootstrap dis-
tributions to changes in the underlying distribution
by letting f change along a least-favorable family.

6. Other connections

In the final presentation in this session, Kitamura [8]
applies EL ideas to the block bootstrap method for
time series. Least-favorable families play a role in
the derivation of some bootstrap inference proce-
dures, including BC-a intervals [4] and automatic
percentile intervals [2]. [1] studies bootstrap likeli-
hood and EL, and discusses relative advantages of
EL and bootstrap methods.
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