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Project Summary/Abstract

This SBIR project aims to produce superior methods and software for classification and regression when
there are many potential predictor variables to choose from. The methods should (1) produce stable
results, where small changes in the data do not produce major changes in the variables selected or in
model predictions; (2) produce accurate predictions; (3) facilitate scientific interpretation, by selecting
a smaller subset of predictors which provide the best predictions; (4) allow continuous and categorical
variables; and (5) support linear regression, logistic regression (predicting a binary outcome), survival
analysis, and other types of regression.

This project is based on least angle regression, which unifies and provides a fast implementation for
a number of modern regression techniques. Least angle regression has great potential, but currently-
available software is limited in scope and robustness. The outcome of this project should be software
which is more robust and widely applicable.

This software would apply broadly, including to medical diagnosis, detecting cancer, feature selection in
microarrays, and modeling patient characteristics like blood pressure.

Phase I work demonstrates feasibility by extending least angle work in three key directions–categorical
predictors, logistic regression, and a numerically-accurate implementation.

Phase II goals include extensions to other types of explanatory variables (e.g. polynomial or spline func-
tions, and interactions between variables), to survival and other additional regression models, and to
handle missing data and massive data sets.

This proposed software will enable medical researchers to obtain high prediction accuracy, and obtain
stable and interpretable results, in high-dimensional situations.

Project Narrative

Predicting outcomes based on covariates, determining which covariates most affect outcomes, and ad-
justing treatment effects estimates for covariates, are among the most important problems in biostatistics.
Prediction and feature selection are particularly difficult when there are more possible features than sam-
ples; gene microarrays and protein mass spectrometry are extreme examples of this, producing thousands
to millions of measurements per sample. LARS excels at feature selection; the proposed software should
enable medical researchers to obtain stable and interpretable models with better prediction accuracy in
high-dimensional situations.
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2 Specific Aims

“I’ve got all these variables, but I don’t know which ones to use.”

Classification and regression problems with large numbers of candidate predictor variables occur in a
wide variety of scientific fields, increasingly so as improvements in data collection technologies facilitate
collecting large numbers of potential predictors. For example, in microarray analysis large numbers of
genes are analyzed, and the number of predictors (genes) typically exceeds the number of observations.

Goals in model selection include:

• accurate predictions,

• interpretable models—determining which predictors are scientifically meaningful,

• stability—small changes in the data should not result in large changes in either the subset of predic-
tors used, the associated coefficients, or the predictions, and

• avoiding bias in hypothesis tests during or after variable selection.

Older methods, such as stepwise regression, all-subsets regression and ridge regression, fall short in
one or more of these criteria. Modern procedures such as boosting (Freund and Schapire, 1997) for-
ward stagewise regression (Hastie et al., 2001), and the Lasso (Tibshirani, 1996), improve stability and
predictions, but can be slow.

Efron et al. (2004) show that there are strong connections between these modern methods and a new
method, least angle regression, and that a single fast algorithm can be used to implement all of them.
They use the term LARS to collectively refer to least angle regression and the fast implementation of
the other methods. LARS is potentially revolutionary, offering interpretable models, stability, accurate
predictions, graphical output that shows the key tradeoff in model complexity, and a simple data-based
rule for determining the optimal level of complexity that nearly avoids the bias in hypothesis tests.

In Phase I we began the process of converting the original academic LARS software to more widely-usable
software, by improving numerical stability, generalizing from linear to logistic regression, supporting factor
variables, and by making the software easier to use. We produced and have delivered prototype software
to our consultants and other outside testers.

Our goal in Phase II is to produce high-quality software for classification and regression based on LARS
for widespread use. Specific aims include:

• generalize to additional nonlinear models, such as other generalized linear models, survival analysis,
mixed-effects models, robust regression, and classification

• allow for missing data

• handle massive data sets

• provide a graphical user interface (GUI)

• provide a well-designed interface for non-GUI users

• provide a framework that academic collaborators can extend

• support for other types of types of explanatory variables (e.g. polynomial or spline functions, and
interactions between variables)
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• provide tools for choosing parameters and assessing significance and stability, e.g. Cp, F statistics,
cross validation and bootstrap.

Progress in Phase I was excellent, and there are a number of very interested academic collaborators.
(Some text is omitted from this version of the proposal.)

This project could have a strong positive impact on our nation’s health care. Predicting outcomes based
on covariates, and determining which covariates most affect outcomes, are among the most important
problems in biostatistics.
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3 Background and Significance

3.1 Technical Problem or Opportunity

Ten years ago, when the PI (Hesterberg) first joined Insightful (the statistical software company that de-
velops and sells S-PLUS), he asked Brad Efron (2004 President of the American Statistical Association),
what he thought were the most important problems in statistics, that Insightful could try to solve. The
expectation was that Efron’s answer would relate to the bootstrap, given his status as its inventor. Instead,
he named a single problem, variable selection in regression. This entails selecting variables from among
a set of candidate variables, estimating parameters for those variables, and inference—hypotheses tests,
standard errors, and confidence intervals.

It is hard to argue with this assessment. Regression, the problem of estimating a relationship between a
response variable and various predictors (explanatory variables, covariates) is of paramount importance
in statistics (particularly when we include “classification” problems, where the response variable is cate-
gorical). A large fraction of regression problems require some choice of what predictors to use. Efron’s
work has long been strongly grounded in solving real problems, many of them from biomedical consulting.
His answer reflects the importance of variable selection in practical statistical work.

Classical tools for analyzing regression results, such as t statistics for judging the significance of individual
predictors, are based on the assumption that the set of predictors is fixed in advance. When instead the
set is chosen adaptively, incorporating those variables that give the best fit for a particular set of data,
the classical tools are biased. For example, if there are 10 candidate predictors, and we select the single
one that gives the best fit, there is about a 40% chance that that variable will be judged significant at the
5% level, when in fact all predictors are independent of the response and each other. Similar bias holds
for the F test for comparing two models; it is based on the assumption that the two models are fixed in
advance, rather than chosen adaptively.

This bias affects the variable selection process itself. Formal selection procedures such as stepwise
regression and all-subsets regression are ultimately based on statistics related to the F statistics for
comparing models. Informal selection procedures, in which an analyst picks variables that give a good fit,
are similarly affected.

Move forward six years, to 2002; little progress was made—Allan Miller wrote in 2002 in the preface to the
second edition of Subset Selection in Regression (Miller, 2002):

What has happened in this field since the first edition was published in 1990?

The short answer is that there has been very little progress. The increase in the speed of
computers has been used to apply subset selection to an increasing range of models, linear,
nonlinear, generalized linear models, to regression methods which are more robust against
outliers than least squares, but we still know very little about the properties of the parameters
of the best-fitting models chosen by these methods. From time-to-time simulation studies have
been published, e.g. Adams (1990), Hurvich and Tsai (1990), and Roecker (1991), which have
shown, for instance, that prediction errors using ordinary least squares are far too small, or
that nominal 95% confidence regions only include the true parameter values in perhaps 50%
of cases.

Problems arise not only in selecting variables, but also in estimating coefficients for those variables, and
producing predictions. The coefficients and predictions are unstable (small changes in the data may
result in large changes in the set of variables included in a model and in the corresponding coefficients
and predictions) and are biased. Miller (2002) notes:

As far as estimation of regression coefficients is concerned, there has been essentially no
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progress.

Moving forward to the present, we believe that the new technique, least angle regression Efron et al.
(2004), and its Lasso and forward stagewise variations, offer strong promise for producing interpretable
models, accurate predictions, and approximately unbiased inferences.

The academic community evidently concurs. There is a flurry of activity in the area; a Google Scholar
search shows 114 citations of (Efron et al., 2004).

Outside Collaboration

We expect to attract a substantial amount of collaboration during Phase II work, for a number of reasons.
This is an area of active research, and we maintain strong ties to the academic community. Much of the
academic software for LARS and Lasso has been released as S-PLUS packages (lasso2 (Lokhorst et al.,
1999), brdgrun (Fu, 2000), lars (Efron and Hastie, 2003)) or R packages (glmpath (Park and Hastie,
2006b), elasticnet (Zou and Hastie, 2005b), glasso (Kim et al., 2005b)). Insightful is working to facilitate
the use of R packages in S-PLUS; this is a key feature of the next release of S-PLUS, which enters beta
testing in April 2006. Our prototype “S+GLARS” library is based in part on lars and glmpath, runs in both
S-PLUS and R, and is released under an open source license, GPL 2.0 (GNU Public License), to allow
others to build on the framework we develop. (Some text is omitted from this version of the proposal.)

We anticipate spending a substantial amount of time during Phase II working with some of these and other
collaborators to adapt their algorithms, and in some cases their software, for use by the wider statistical
community.

We feel that this collaborative approach is best in this rapidly-developing field.

Part of our strategy is to provide a framework that others can build on, to encourage the creation of high-
quality work in S-PLUS and R, to supplement our own efforts. We plan to create front-end functions for
specific areas, such as linear regression, generalized linear models, and cox regression, that other people
can plug their own fitting (parameter estimation) routines into. We also plan to create utilities for plotting
and other post-estimation analysis, and standards for the structure of objects returned by fitting routines;
as long as the fitting routines adhere to those standards, third-party statistical analysts could use their
choice of fitting routines, with a common user interface.

Note that software developed in academic settings typically requires substantial work to be suitable for
the wider community; it often covers only special cases and requires substantial research to generalize,
and lacks the attention to detail needed for wide use. By providing a good framework, much of that detail
work need only be done once.

The feedback from these collaborators has also informed the priorities in this proposal; they recommended
work on generalized linear models, Cox regression, handling missing data, mixed effects models, group
models (factors, splines, etc.), support for elastic net and ridge regression, tools for model selection such
as Cp and AIC, as well as various suggestions for the user interface.

Related Work

(Some text is omitted from this version of the proposal.)
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3.2 Background

In this section we begin with a preface indicating the significance of the problem, describe a diabetes data
set we use as an example, then give background in the form of discussion of various methods and their
relative merits.

We write LAR for least angle regression, and LARS to include LAR as well as Lasso or forward stagewise
implemented by least angle methods. We use the terms predictors, covariates, explanatory variables, and
variables interchangeably (except we use the latter only when it is clear we are discussing explanatory
rather than response variables).

The example in this section involves linear regression, but most of the text applies as well to logistic, sur-
vival, and other nonlinear regressions in which the predictors are combined linearly, where predictions are
some function of βjxj . We note where there are differences between linear regression and the nonlinear
cases.

The restriction to linear combinations of predictors is not as limiting as it may appear; the predictors may
themselves be nonlinear functions of other variables, e.g. polynomial functions for polynomial regression.
This includes some versions of the newer “random forest” techniques, where the predictors are themselves
trees, certain piecewise constant functions of underlying explanatory variables.

When discussing methods, we begin with “pure variable selection” methods such as stepwise regression
and all-subsets regression that pick predictors, then estimate coefficients for those variables using stan-
dard criteria such as least-squares or maximum likelihood. In other words, these methods focus on vari-
able selection, and do nothing special about estimating coefficients. We then move on to ridge regression,
which in its usual form does the converse—it is not concerned with variable selection (it uses all candidate
predictors), and instead modifies how coefficients are estimated. We then discuss the LASSO method,
a variation of ridge regression that modifies coefficient estimation so as to reduce some coefficients to
zero, effectively performing variable selection. From there we move to forward stagewise regression, an
incremental version of stepwise regression that gives results very similar to the Lasso. Finally we turn to
least angle regression, which connects all the methods.

Diabetes Data Set

Before describing the new methods and related older methods, we describe a dataset we use to demon-
strate and compare the methods.

Ten predictor variables, consisting of age, sex, body mass index, average blood pressure, and six different
blood serum measurements, were obtained for each of 442 diabetes patients, as well as the response, a
quantitative measure of disease progression one year after baseline. One goal is to create a model that
predicts the response from the predictors; a second is to find a smaller subset of predictors that fits well,
suggesting that those variables are important factors in disease progression. Part of this dataset is shown
in Table 1.

Stepwise and All-Subsets Regression

We begin our description of various regression methods with stepwise and all-subsets regression, meth-
ods which focus on which variables are selected for a model, rather than on how coefficients are estimated
once variables are selected.

Forward stepwise regression begins by selecting a single predictor variable which produces the best fit,
e.g. the smallest residual sum of squares. Another predictor is then added which produces the best fit in
combination with the first, followed by a third which produces the best fit in combination with the first two,
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Table 1: Diabetes Study: 442 patients were measured on 10 baseline variables; a prediction model is
desired for the response variable, a measure of disease progression one year after baseline.

Patient Age Sex BMI BP S1 S2 S3 S4 S5 S6 Y
1 59 2 32.1 101 157 93.2 38 4.0 4.9 87 151
2 48 1 21.6 87 183 103.2 70 3.0 3.9 69 75
3 72 2 30.5 93 156 93.6 41 4.0 4.7 85 141
...

...
...

...
...

...
...

...
...

...
...

...
442 36 1 19.6 71 250 133.2 97 3.0 4.6 92 57

and so on. This process continues until some stopping criteria is reached, based e.g. on the number of
predictors and lack of improvement in fit. Table 2 shows the first 6 steps of forward stepwise least-squares
linear regression applied to the diabetes data set.

Table 2: Forward Stepwise: The single best predictor is BMI; the best predictor in combination with BMI
is S5, etc. The sequence is BMI, S5, BP, S1, Sex, S2.

Step Intercept Age Sex BMI BP S1 S2 S3 S4 S5 S6
1 -117 0.00 0.00 10.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 -299 0.00 0.00 7.28 0.00 0.00 0.00 0.00 0.00 56.06 0.00
3 -334 0.00 0.00 6.50 0.90 0.00 0.00 0.00 0.00 49.58 0.00
4 -327 0.00 0.00 6.53 0.93 -0.28 0.00 0.00 0.00 58.86 0.00
5 -320 0.00 -14.14 6.47 1.05 -0.30 0.00 0.00 0.00 60.36 0.00
6 -313 0.00 -21.59 5.71 1.13 -1.04 0.84 0.00 0.00 73.31 0.00

The process can be unstable, in that relatively small changes in the data might cause one variable to be
selected instead of another, after which the sequence may be completely different. For example, Table 3
shows the result of the same procedure applied to a bootstrap sample of the original data (a sample of the
same size, with replacement). As before, BMI and S5 are selected first, but now the sequence continues
with Sex, S3, S6, and S4, rather than BP, S1, Sex and S2. Only three of the first six variables are common.

Table 3: Forward Stepwise Applied to a Bootstrap Sample: The sequence is BMI, S5, Sex, S3, S6, S4.

Step Intercept Age Sex BMI BP S1 S2 S3 S4 S5 S6
1 -117 0.00 0.00 10.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 -299 0.00 0.00 7.28 0.00 0.00 0.00 0.00 0.00 56.06 0.00
3 -293 0.00 -8.00 7.30 0.00 0.00 0.00 0.00 0.00 57.11 0.00
4 -194 0.00 -15.62 6.69 0.00 0.00 0.00 -0.91 0.00 51.48 0.00
5 -211 0.00 -17.08 6.42 0.00 0.00 0.00 -0.91 0.00 47.95 0.47
6 -203 0.00 -16.38 6.45 0.00 0.00 0.00 -1.20 -5.23 52.33 0.52

Backward stepwise regression is similar, except that initially all variables are included in the model, and
variables are removed one at a time, according to which variable makes the smallest contribution to the
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fit.

Efroymson’s procedure (Efroymson, 1960) combines forward and backward steps. Starting from some
initial model, the worst included variable is discarded if the effect on fit falls short of some specified criteria;
otherwise the best excluded variable is added if the improvement on fit exceeds a specified criteria.

The preceding algorithms are greedy, making the best change at each step, regardless of future effects. In
contrast, all-subsets regression is exhaustive, considering all subsets of variables of each size. In practice
the interest is only in some number of best subsets of each size, which are found efficiently by a leaps
and bounds procedure (Furnival and Wilson, 1974) in the case of linear regression. The advantage over
stepwise procedures is that the best set of two predictors need not include the predictor that was best in
isolation. The disadvantage of leaps and bounds is that biases in inference are even greater, because it
considers a much greater number of possible models.

In the case of linear regression, all computations for these stepwise and all-subsets procedures can be
computed using a single pass through the data. This improves speed substantially in the usual case that
n >> p, though not when p > n, as in the analysis of microarrays. Consider the model

Y = Xβ + ε (1)

where Y is a vector of length n, X an n by p matrix, β a vector of length p containing regression coef-
ficients, and ε assumed to be a vector of independent normal noise terms. In variable selection, when
some predictors are not included in a model, the corresponding terms in β are set to zero. There are a
number of ways to compute regression coefficients and error sums of squares in both stepwise and all
subsets regression. One possibility is to use the cross-product matrix

Z ′Z =
[
X ′X X ′Y
Y ′X Y ′Y

]
, (2)

where Z indicates the augmented matrix [ X Y ]. Another is to use the QR decomposition Z = QR,
whereQ has orthonormal columns andR is upper triangular. Both Z ′Z andQR withQ stored in a compact
factored form can be computed in a single pass through the data, and in both cases there are efficient
updating algorithms for adding or deleting variables (the SWEEP algorithm for Z ′Z and planar rotations
for QR). Numerical accuracy in these computations can be assessed via the condition number (ratio of
largest to smallest eigenvalue magnitudes) of the linear equations used to solve for the coefficients. The
condition number of Z ′Z is of the order of the square of that for QR, so that QR is considerably more
stable numerically. See e.g. (Kennedy and Gentle, 1980; Lange, 1999; Miller, 2002; Monahan, 2001;
Thisted, 1988) for further information.

For nonlinear regressions, the computations are iterative, and it is not possible to fit all models in a single
pass through the data.

Those points carry over to LARS. We summarize them briefly here, and return to them in more detail
later. The original LARS algorithm computes X ′X and X ′Y in one pass through the data; using the QR
factorization would be more stable, and could also be done in one pass, in the linear regression case.
LARS for nonlinear regression requires multiple passes through the data for each step, hence speed
becomes much more of an issue.

Ridge Regression

The ad-hoc nature of classical variable selection methods, together with observed instability in the asso-
ciated regression coefficients and predictions, has led to other approaches.

One approach is ridge regression (Draper and Smith, 1998; Miller, 2002), which in its usual form includes
all predictors, but with typically smaller coefficients than they would have under ordinary least squares. In
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the simplest form, the estimated regression parameters are equal to

β̂θ = (X ′X + θI)−1X ′Y, (3)

where θ is positive scalar and I is a p × p identity matrix. With θ = 0 this reduces to ordinary least-
squares estimates (with all variables included). Otherwise it corresponds to minimizing a penalized sum
of squares,

n∑
i=1

(Yi −
p∑
j=1

Xi,jβj)2 + θ

p∑
j=1

β2
j . (4)

In practice no penalty is applied to the intercept, and variables are scaled to variance 1 so that the penalty
is invariant to the scale of the original data.

Figure 1 shows the coefficients for ridge regression graphically as a function of θ. As θ increases the terms
become generally smaller. Those variables which are highly correlated with other variables are affected
most, e.g. S1 and S2 have correlation 0.90.
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Figure 1: Coefficients for ridge regression, using standardized variables.

Note that as θ increases, the coefficients approach but do not equal zero. Hence, no variable is ever
excluded from the model (aside from some cases where coefficients cross zero for smaller values of θ).

In contrast, the use of an L1 penalty does reduce terms to zero. This yields the Lasso (Tibshirani, 1996),
which we consider next.

Lasso

Tibshirani (Tibshirani, 1996) proposed minimizing the residual sum of squares, subject to a constraint
on the sum of absolute values of the regression coefficients,

∑p
j=1 |βj | ≤ t. This is equivalent to an

optimization problem with an L1 penalty on the regression coefficients,
n∑
i=1

(Yi −
p∑
j=1

Xi,jβj)2 + θ

p∑
j=1

|βj |. (5)
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Figure 2 shows the resulting coefficients. For comparison, the right panel shows the coefficients from ridge
regression, plotted on the same scale. To the right, where the penalties are small, the two procedures give
close to the same results. More interesting is what happens starting from the left, as all coefficients start
at zero and penalties are relaxed. For ridge regression all coefficients immediately become nonzero. For
the lasso, coefficients become nonzero one at a time. Hence the L1 penalty results in variable selection,
as variables with coefficients of zero are effectively omitted from the model.
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Figure 2: Coefficients for Lasso and Ridge Regression (L1 and L2 penalties).

Another important difference occurs for the predictors which are most significant. Whereas an L2 penalty
θ
∑
β2
j pushes βj toward zero with a force proportional to the value of the coefficient, an L1 penalty

θ
∑
|βj | exerts the same force on all nonzero coefficients. Hence for variables which are most valuable,

which clearly should be in the model and where shrinkage toward zero is less desirable, an L1 penalty
shrinks less.

While this second difference is not as important for interpreting models as the first, it may be even more
important for providing accurate predictions of future values.

In this case, BMI (body mass index) and S5 (a blood serum measurement) appear to be most important,
followed by BP (blood pressure), S3, Sex, S6, S1, S4, S2, and Age. Some curious features are apparent.
S1 and S2 enter the model relatively late, but when they do their coefficients grow rapidly, in opposite
directions. These two variables have strong positive correlation, so these terms largely cancel out, with
little effect on predictions for the observed values. The collinearity between these two variables has a
number of undesirable consequences—relatively small changes in the data can have strong effects on
the coefficients, the coefficients are unstable, predictions for new data may be unstable, particularly if
the new data do not follow the same relationship between S1 and S2 found in the training data, and
the calculation of coefficients may be numerically inaccurate. A second curious feature is that variable
S3 changes direction when S4 enters the model, ultimately changing sign. Here too, high (negative)
correlation between S3 and S4 appears to be an explanation.
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Forward Stagewise

We turn now to another procedure, forward stagewise regression, which at first glance appears to be very
different from the Lasso, but turns out to have similar behavior.

This procedure is motivated by a desire to mitigate the negative effects of the greedy behavior of stepwise
regression. In stepwise regression, the most useful predictor is added to the model at each step, and
coefficients for the current predictors are estimated using ordinary unpenalized least-squares. Stepwise
begins with all coefficients equal to zero, and predictors are retained in the model after they are added.
Forward stagewise also begins with all coefficients equal to zero, and picks the same variable as step-
wise at first. However, stagewise takes only a small step in the direction of that variable (increasing or
decreasing the corresponding coefficient, according to whether the correlation between the variable and
the current residuals is positive or negative). Stagewise then picks the variable with highest correlation
with the current residuals (this may be the same variable as in the previous step), and takes a small step
for that variable, and continues in this fashion.

Where one variable has a clear initial advantage over other variables there will be a number of steps
taken for that variable. Subsequently, once a number of variables are in the model, the procedure tends
to alternate between them.

When two variables are highly correlated and of nearly equal value as predictors, stagewise tends to
alternate between the two variables, with each ending up with a coefficient half as large as it would have
in isolation. Hence the forward stagewise algorithm is more stable than ordinary stepwise regression, for
which one of the two coefficients would be zero and the other large.

While forward stagewise regression has a very different derivation than the Lasso, an idealized version
(with the step size tending toward zero) has very similar behavior to the Lasso. In the diabetes example, it
gives identical results until the eighth variable enters, after which there are small differences. Efron et al.
(2004) discuss the differences.

There are also strong connections between forward stagewise regression and the boosting algorithm
currently popular in machine learning (Efron et al., 2004; Hastie et al., 2001). Indeed, the difference is
not really in the fitting method, but rather in the predictor variables used; in stagewise the predictors are
typically determined in advance, while in boosting the next variable is determined on the fly. In each case
the variables used as predictors in the model may be nonlinear functions of other variables, such as trees.

Least Angle Regression

Least angle regression (Efron et al., 2004) can be viewed as a version of stagewise that uses mathemati-
cal formulas to accelerate the computations. Rather than taking many tiny steps with the first variable, the
appropriate number of steps are determined algebraically, until the second variable begins to enter the
model. Then, rather than taking alternating steps between those two variables until a third variable enters
the model, we jump right to the appropriate spot. Figure 3 shows this process in the case of 2 predictor
variables, for linear regression.

The first variable chosen is the one which has the smallest angle between the variable and the response
variable; in Figure 3 the angle COX1 is smaller than COX2. We proceed in that direction as long as the
angle between that predictor and the vector of residuals Y − γX1 is smaller than the angle between other
predictors and the residuals. Eventually the angle for another variable will equal this angle (once we reach
point B in Figure 3), at which point we begin moving toward the direction of the least-squares fit based on
both variables. In higher dimensions we will reach the point at which a third variable has an equal angle,
and joins the model, etc.

Expressed another way, the (absolute value of the) correlation between the residuals and the first predictor

11



O

X2

X1 AB

CD

E

Figure 3: The LAR algorithm in the case of 2 predictors. O is the prediction based solely on an intercept.
C = Ŷ = β̂1X1 + β̂2X2 is the ordinary least-squares fit, the projection of Y onto the subspace spanned
by X1 and X2. A is the forward stepwise fit after one step; the second step proceeds to C. Stagewise
takes a number of tiny steps from O to B, then takes steps alternating between the X1 and X2 directions,
eventually reaching E; if allowed to continue it would reach C. LAR jumps from O to B in one step, where
B is the point for which BC bisects the angle ABD. At the second step it jumps to C. The Lasso follows
a path from O to B, then from B to C. Here LAR agrees with Lasso and stagewise (as the step size→ 0
for stagewise). In higher dimensions additional conditions are needed for exact agreement to hold.

is greater than the (absolute) correlation for other predictors. As γ increases, eventually another variable
will have equal correlation with the residuals as the active variable, and joins the model as a second active
variable. In higher dimensions additional variables will eventually join the model, when the correlation
between all active variables and the residuals drops to the levels of the additional variables.

Three remarkable properties of LAR There are three remarkable things about LAR. First is the speed:
Efron et al. (2004) note that “The entire sequence of LARS steps with m < n variables requires O(m3 +
nm2) computations — the cost of a least squares fit on m variables.”

Second is that the basic LAR algorithm, based on the geometry of angle bisection, can be used to effi-
ciently fit the Lasso and stagewise models, with certain modifications in higher dimensions, (Efron et al.,
2004). This provides a fast and relatively simple way to fit Lasso and stagewise models.

Madigan and Ridgeway (2004) comments that Lasso has had little impact on statistical practice, due to
the inefficiency of the original Lasso and complexity of more recent algorithms (Osborne et al., 2000) and
that this “efficient, simple algorithm for the Lasso as well as algorithms for stagewise regression and the
new least angle regression” are “an important contribution to statistical computing”.

Third is the availability of a simple Cp statistic for choosing the number of steps,

Cp = (1/σ̂2)
n∑
i=1

(yi − ŷi)2 − n+ 2k (6)

where k is the number of steps and σ̂2 is the estimated residual variance (estimated from the saturated
model, assuming that n > p). This is based on Theorem 3 in (Efron et al., 2004), which indicates that after
k steps of LAR the degrees of freedom η =

∑n
i=1 cov(µ̂i, Yi) is approximately k. Using this Cp statistic,

one would stop after the number of steps k that minimizes the statistic.

Zou et al. (2004) extend that result to Lasso, showing an unbiased relationship between the number of
terms in the model and degrees of freedom, and discuss Cp, AIC and BIC criterion for model selection.

There are some questions about this Cp statistic (Ishwaran, 2004; Loubes and Massart, 2004; Madigan
and Ridgeway, 2004; Stine, 2004), and some suggest other selection criteria, especially cross-validation.

Note that there are different definitions of degrees of freedom, and the one used here is appropriate for
Cp statistics, but that k does not measure other kinds of degrees of freedom. In particular, neither the
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average drop in residual squared error, nor the expected prediction error are linear in k (under the null
hypothesis that βj = 0 for all j) Figure 4 shows the behavior of those quantities. In the left panel we see
that the residual sums of squares drop more quickly for LAR than for ordinary least squares (OLS) with
fixed prediction order, suggesting that by one measure, the effective degrees of freedom is greater than
k. In the right panel, the sums of squares of coefficients measures how much worse predictions are than
using the using the true parameters βj = 0; here LAR increases more slowly than for OLS, suggesting
effective degrees of freedom less than k. These two effects balance out for the Cp statistic.

In contrast, stepwise regression has effective degrees of freedom greater than the number of steps; it
overfits when there is no true signal, and prediction errors suffer.
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Figure 4: Effect of LAR steps on residual variance and prediction error. The left panel shows the residual
sum of squares for LAR, ordinary least-squares with fixed predictor order, and stepwise regression. The
right panel shows

∑p
i=1 β

2
j ; this measures how much less accurate predictions are than for the true model.

Figures based on simulation with 10,000 replications, with n = 40, p = 20, orthogonal predictors with norm
1, βj = 1∀j, and residual variance 1.

These results are encouraging. It appears that LAR fits the data more closely than OLS, with a smaller
penalty in prediction errors. While in this example there is only noise and no signal, it suggests that LAR
may have relatively high sensitivity to signal and low sensitivity to noise. Work is needed to investigate
this.

Comparing LAR, Lasso and Stagewise In general in higher dimensions native LAR and the least angle
implementation of Lasso and stagewise give results that are similar but not identical. When they differ,
LAR has a speed advantage, because LAR variables are added to the model, never removed. Hence it will
reach the full least-squares solution, using all variables, in p steps. For Lasso, and to a greater extent for
stagewise, variables can leave the model, and possibly re-enter later, multiple times. Hence they may take
more than p steps to reach the full model. Efron et al. (2004) test the three procedures for the diabetes
data using a quadratic model, consisting of the 10 main effects, 45 two-way interactions, and 9 squares
(excluding the binary variable Sex). LAR takes 64 steps to reach the full model, the Lasso variation takes
103, and stagewise takes 255. Even in other situations, when stopping short of the saturated model, LAR
has a speed advantage.
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The three methods have interesting derivations. Lasso is regression with an L1 penalty, a relatively simple
concept; this is also known as a form of regularization in the machine learning community. Stagewise is
closely related to boosting, or “slow learning” in machine learning. LAR has a simpler interpretation than
the original derivation; it can be viewed as in relation to Newton’s method, which makes it easier to extend
to some nonlinear models such as generalized linear models.

3.2.1 Existing knowledge

We begin with a review of other contributions in the literature, followed by a summary of work needed.

Other penalty approaches Ridge regression uses an L2 penalty, and Lasso an L1 penalty. Zou and
Hastie (2005a) propose the “elastic net”, penalized regression with a sum of L1 and L2 penalties. This is
useful in the analysis of microarray data, as it tends to bring related genes into the model as a group. It
appears to give better predictions than Lasso when predictors are correlated.

Tibshirani et al. (2005) propose the “fused Lasso”, involving a combination of an L1 penalty on coefficients,
and an L1 penalty on the difference between adjacent coefficients. This is useful for problems such as
the analysis of proteomics data, where there is a natural ordering of the predictors (e.g. measurements
on different wavelengths) and coefficients for nearby predictors should normally be similar; it tends to give
locally-constant coefficients.

Yuan and Lin (2006) discuss “grouped Lasso” and “grouped LARS”, for use when some predictors have
multiple degrees of freedom, such as factor variables. The approach is similar to the approach suggested
in our Phase I application and implemented in our Phase I work for LAR; involving working with the angle
between the partial residuals and the space spanned by a basis for the a factor, rescaled based on the
degrees of freedom.

Yuan and Lin (2005) propose an empirical Bayes method closely related to Lasso. Unlike Efron et al.
(2004), where the error variance needed for the Cp statistic is estimated from the saturated model, here it
is estimated with other parameters, so the method could be used when p > n.

Nonlinear models The original LARS method is for linear regression. Several authors have discussed
extensions to other models, including Cox regression (Gui and Li, 2005; Park and Hastie, 2006a), gen-
eralized linear models (Madigan and Ridgeway, 2004; Park and Hastie, 2006a), robust linear regression
(Rosset and Zhu, 2004a; Van Aelst et al., 2005), exponential family models (Rosset, 2005), and support
vector machines (Hastie et al., 2004; Zhu et al., 2003).

Some additional authors discuss general strategies for solutions in nonlinear models. Roth (2004) dis-
cusses a method for iteratively reweighted least squares (IRLS) applications. Rosset and Zhu (2004b) dis-
cuss conditions under which coefficient paths are piecewise linear, and Rosset (2005) discuss a method
for tracking curved coefficient paths; however, the algorithm requires computing a gradient and Hessian
at each of many small steps, and so is poorly suited for large problems. Kim et al. (2005a) propose a
gradient approach particularly useful for high dimensions.

Applications A number of authors discuss applications to microrarrays (Gui and Li, 2005; Segal et al.,
2003; Zhu and Hastie, 2004; Zou and Hastie, 2005a), or proteomics (Tibshirani et al., 2005).

Work needed LARS has considerable promise, offering speed, interpretability, relatively stable predic-
tions, close to unbiased inferences, and nice graphical presentation of the whole sequence of coefficients.
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But considerable work is required to turn this promise into widely-used reality.

• A number of different algorithms have been developed, for linear and nonlinear models. These differ
in speed, numerical stability, accuracy (in the nonlinear case, how well do algorithms track the exact
curved coefficient paths), collinearity, and handling of details such as variables which are nearly tied
in importance. Additional algorithms are undoubtedly being developed. Work is needed to compare
the algorithms, with artificial and real data, with a variety of sizes — large and small n and p.

Speed is an issue for nonlinear models, particularly if cross validation is used for model selection,
or bootstrapping for inferences. In the linear regression case the cross-product matrices or QR
decomposition required for computations can be calculated in a single pass through the data. In
contrast, for the nonlinear models, fitting each subset of predictors requires multiple passes through
the data, with the QR or cross-product summary recomputed at each pass.
• Alternate penalties such as the elastic net and fused lasso offer advantages for certain kinds of data,

in particular microarrays and proteomics; work is needed to create algorithms using these penalties
in nonlinear models, to investigate their properties, and to provide guidance on choosing the tuning
parameters—in contrast to LAR and Lasso, which each have only a single tuning parameter, these
procedures have two or more.
• The original methodology is limited to continuous or binary covariates. The grouped Lasso and LAR

are one extension to factor variables or other variables with multiple degrees of freedom such as
polynomial and spline fits. Work is needed to investigate these methods, and to extend them to
nonlinear models.
• There are a number of practical considerations in some applications that need attention, including

order restrictions (e.g. main effects should be included in a model before interactions, or linear terms
before quadratic), forcing certain terms into the model, allowing unpenalized terms, or applying dif-
ferent levels of penalties to different predictors based on an analyst’s knowledge. For example,
when estimating a treatment effect, the treatment term should be forced into the model and esti-
mated without penalty, while covariates should be optional and penalized.
• A variety of work is needed under the broad category of inferences, including tuning parameters and

more traditional inferences. LARS and Lasso require the choice of a tuning parameter (the number
of steps, or magnitude of the L1 penalty); the elastic net, and fused Lasso require multiple tuning
parameters. Work is needed to investigate and compare methods including Cp, AIC, BIC, cross-
validation, and empirical Bayes. The theoretical work on the Cp statistic to date is under the null
hypothesis that no coefficients are nonzero; how is it affected when some coefficients are nonzero?
• Work is needed to develop estimates of bias, standard error, and confidence intervals, for pre-

dictions, coefficients, and linear combinations of coefficients. Are predictions sufficiently close to
normally-distributed to allow for the use of t confidence intervals? Coefficients are definitely not
normally distributed, due to a point mass at zero; but when coefficients are sufficiently large, might
t intervals still be useful?
• Work is also needed to look at the signal-to-noise ratio for these methods, and to compare to alter-

natives. A good signal-to-noise ratio would be a strong impetus for the statistical community to use
the methods.
• Work is needed to develop numerical and graphical diagnostics to interpret regression model output.
• Finally, to truly realize the promise of these methods, they must be encoded in robust and easy-to-

use software suitable for a broad base of users, not just sophisticated academic researchers.

We close this section by returning to a positive note, with comments in the literature about LARS: Knight
(2004) is impressed by the robustness of the Lasso to small changes in its tuning parameter, relative to
more classical stepwise subset selection methods, and notes “What seems to make the Lasso special
is (i) its ability to produce exact 0 estimates and (ii) the ‘fact’ that its bias seems to be more controllable
than it is for other methods (e.g., ridge regression, which naturally overshrinks large effects) . . . ” Loubes
and Massart (2004) indicate “It seems to us that it solves practical questions of crucial interest and raises
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very interesting theoretical questions . . . ”. Segal et al. (2003) write “The development of least angle
regression (LARS) (Efron et al., 2004) which can readily be specialized to provide all lasso solutions in
a highly efficient fashion, represents a major breakthrough. LARS is a less greedy version of standard
forward selection schemes. The simple yet elegant manner in which LARS can be adapted to yield lasso
estimates as well as detailed description of properties of procedures, degrees of freedom, and attendant
algorithms are provided by (Efron et al., 2004).”

3.2.2 Commercial Opportunities

(Some text is omitted from this version of the proposal.)

3.2.3 Societal Benefits

This project could have a strong positive impact on our nation’s health care. Predicting outcomes based
on covariates, and determining which covariates most affect outcomes, are among the most important
problems in biostatistics.

This proposed software should enable medical researchers to obtain stable and interpretable models with
better prediction accuracy in high-dimensional situations, including analysis of data from the emerging
technologies such as microarrays and proteomics.

3.3 Phase II Applications and Anticipated Outcomes

The overall goal in Phase II is to produce high-quality software for classification and regression based on
LARS for widespread use. This project should substantially widen the rather limited scope of the original
software. We intend to handle many of the issues important in practice, including missing data, assessing
significance and stability.
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4 Preliminary Studies/Progress Report

4.1 Phase I Grant Performance Period
(Some text is omitted from this version of the proposal.)

4.2 Key Personnel and Project Service
(Some text is omitted from this version of the proposal.)

4.3 Specific Aims
The three specific aims in the Phase I proposal are:

• extension to logistic regression
• allow factor variables with more than two levels
• develop efficient and numerically stable computation

These aims were chosen to demonstrate feasibility of extending the basic methodology to produce soft-
ware that could be widely used in practice for a variety of applications. The extension to logistic regression
provides evidence that it is feasible to extend the basic methodology to other nonlinear regression models,
including other generalized linear models, survival analysis, and mixed-effects models. Factor variables
are important in their own right, and the extension to factor variables suggests that the methodology can
be extended to other types of predictors with multiple degrees of freedom, such as nonlinear relationships
using polynomials or splines. It is also the first step in extending the methods to hierarchical models, for
example to fit main effects before interactions. Finally, the development of numerically-stable algorithms
is necessary for reliable use by a wide range of analysts.

4.4 Results, Progress, and Achievement Towards Goals
We achieved the three specific aims, and substantially more, both methodological developments and soft-
ware. We accomplished more than anticipated in terms of handling collinearity, simultaneous entry of
variables, different ways of handling factors, and developing an alternate formulation of LARS that sup-
ports nonparametric regression such as generalized additive models. Furthermore, the software produced
is substantially more complete than anticipated.

Here we discuss two issues, give an overview of the main results, then give more detail in key areas.

The first issue is that we decided to focus our efforts on the LAR and LASSO cases, and de-emphasize the
Forward Stagewise case. LAR is the fastest, and LASSO has a nice interpretation in terms of optimizing
a penalized likelihood. Forward stagewise is the slowest, sometimes substantially so, and does not seem
to have strong advantages.

Second, we decided to produce an open-source library that will run in both S-PLUS and R. This makes it
easier to benefit from open-source work done in the academic community, and improves our ability to work
collaboratively with outside contributors; indeed, the decision was greeted enthusiastically by key potential
collaborators, and a large number of researchers in the area have requested the prototype library.

Now, we give an overview of our main results. We began with the basic algorithm of (Efron et al., 2004)
and their publicly-available software (Efron and Hastie, 2003), for the linear regression case. We created
a version that is substantially faster (∼16 times faster), primarily by doing core calculations in FORTRAN
rather than S (we use S to refer to code in the S language, of which S-PLUS and R are dialects).

We developed a more accurate algorithm for the linear case, using the QR decomposition of X rather
than the Cholesky decomposition of cross-product matrices X ′X. For example, with n = 100, p = 50, and
correlation 0.999999 between each pair of predictors, the new algorithm has mean absolute roundoff error
of 7.5×10−13, compared to 1.8×10−8 for the original algorithm. The ratio between these numbers is 24346,
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approximately equal to the condition number of X, 21760, as expected. Note that in practice it is easy
to get even higher condition numbers even with lower pairwise correlations, due to higher-dimensional
collinearity.

The more accurate algorithm is slower than the original (∼4.8 times slower), in the current S implemen-
tation. Converting this to FORTRAN or some other compiled language should result in a substantial
speedup, even more than the factor of 16 observed for the other algorithm, because we could use QR
updating techniques when adding or dropping variables, whereas the prototype S implementation recom-
putes the decomposition from scratch in each step. We expect the ultimate speed to nearly equal the
original algorithm.

We also made advances in an area related to accuracy, but not anticipated in the Phase I proposal —
linear dependence. When predictors are linearly dependent then an ordinary linear least squares fit is
ill-defined, unless predictors are dropped from the model. Similar, in LARS, the set of active variables
should not be linearly dependent. Our software checks for linear dependence, and excludes dependent
inactive variables from consideration for activation, permanently in the LAR case, and temporarily in the
LASSO case (when a variable leaves a model, the set of variables that should be prohibited may change).

For logistic regression, we developed an algorithm for the LAR case. We also began work on a version for
the LASSO, but when the glmpath library (Park and Hastie, 2006a) was released, we decided to use that
since it included more sophisticated computations for the underlying convex optimization problem than we
would have had time to develop in Phase I.

For factor variables, we took two approaches. The first, suggested by Saharon Rosset, is to include a
dummy variable for each level of a factor, and let the fitting algorithm select coefficients; only some of the
levels would have nonzero coefficients. The second is more closely related to the approach envisioned in
our Phase I proposal, incorporating a factor variable as a single entity.

We created a software library including documentation that runs in both S-PLUS and R. The main fitting
routines in the library are:

• lars.fit.eh the original Efron-Hastie algorithm, in S; LAR, LASSO and forward stagewise,
• lars.fit.fortran FORTRAN version of the original algorithm, LAR, LASSO and forward stage-

wise,
• lars.fit.s more accurate algorithm, in S; LAR and LASSO,
• glars.fit.s logistic regression, in S; LAR,
• glmpath logistic, linear, and Poisson regression, calls FORTRAN for core calculations; LASSO, and
• coxpath Cox proportional hazards regression, calls FORTRAN for core calculations; LASSO.

The lars function provides a user-friendly front end to the three fitting routines for the linear case. It
allows the user to specify variables to use by means of a formula, rather than constructing a design
matrix manually. This function supports factor variables using the dummy variable approach (the second
approach to factors currently requires calling lars.fit.s directly).

There are also some routines for plotting and nicely-formatted output of the fitting results, or further anal-
ysis such as cross-validation.

The lars.fit.eh function is from (Efron and Hastie, 2003); the glmpath and coxpath functions are from
(Park and Hastie, 2006a). The plotting, printing, and cross-validation routines are also largely from those
libraries. We have made some improvements, ranging from the obvious (allow space for axis labels so
they are not off the page) to more subtle (avoiding programming constructions that fail for some user
inputs).

Extension to logistic regression. Our extension of LARS to logistic regression exploits the relation-
ship of LARS to Newton’s method, which also leads to efficient and numerically stable computational
procedures in the linear case.
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As an example of the effectiveness of this approach, our test cases included the 2-class leukemia data
(Golub et al., 1999), which consists of training and test sets with 38 and 34 observations, respectively,
and 3051 genes as predictors. Collinearity is an issue here, and our implementation selected a maximum
of only 8 out of the 3051 genes. A summary of results for the best models obtained is given in Table 4.

Table 4: Classification errors for the logistic LAR fit to the training data on the 2-class leukemia data.

# predictors (genes) # training errors # test errors
6 / 3051 0 / 38 1 / 34
7 / 3051 0 / 38 1 / 34
8 / 3051 0 / 38 2 / 34

The problem to be solved is to fit to a vector y with a linear or generalized linear model

y ∼ model(Xβ); X ≡
(
x1 . . . xn

)
; β ≡

(
β1, . . . , βp

)T
in such a way that the set of coefficients β1, . . . , βp contains relatively few nonzero components. In the
case of linear LARS, the model is chosen is with respect to the sum of squares criterion

Fleast-squares(β) =
1
2

n∑
i=1

(yi − xTi β)2 (7)

in increments of only a few variables at a time while for logistic LARS the model is chosen with respect to
the following criterion

Flogistic(β) =
n∑
i=1

[
log
(
1 + exp(xTi β)

)
− yi

(
xTi β

)]
, (8)

(e.g. McCullagh and Nelder 1989, p. 115). For ordinary least-squares and logistic regression, coefficients
are chosen to minimize these criteria; however LARS generates a series of model fits that are related
to these criteria, but do not in general produce the same coefficients as least-squares or logistic fits for
the model reduced to the set of predictors with nonzero coefficients. The advantage in viewing LARS in
relation to Newton’s method is that the derivations extend in a straightforward manner to other generalized
linear models of interest.
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Efficient and numerically stable computation. .

Computation of LARS directions. As mentioned above, LARS directions are related to the Newton
directions relative to the active predictors with respect to the objective function (7) in the linear case and
(8) in the logistic case. The Newton direction d is the solution to

∇2F (β) d = −∇F (β),

where the objective, Hessian and gradients are given in Table 5, in which X denotes the current but not
necessarily complete set of predictors. We assume that any new predictors are added as the last columns
of X and that the coefficients in β corresponding to the new columns are initially 0. Two mathematically
equivalent forms are given in the logistic case; the choice is important for numerical reasons, as explained
later in this section.

Table 5: Linear and logistic LARS, objective, gradient and Hessian.

ti : objective =
∑n

i=1 ti ri : gradient = −XT r si : Hessian = XTdiag(s)X

linear 1
2(yi − xTi β)2 yi − xTi β 1

logistic log[1+exp(xT
i β)]−yi(xT

i β) yi −
exp(xT

i β)

1+exp(xT
i β)

exp(xT
i β)

[1+exp(xT
i β)]2

logistic log[1+exp(−xT
i β)]−log[exp(−xT

i β)]−yi(xT
i β) yi − 1

1+exp(−xT
i β)

exp(−xT
i β)

[1+exp(−xT
i β)]2

In the case of linear LARS, the Newton equations are

XTXd = XT (y −Xβ) = XT r(β).

Note that the components of the negative gradient, XT r(β), when scaled by the norms of the rows of X,
are the correlations for the current predictors. A unit step along the Newton direction would give a new
set of coefficients β + d for which the correlations corresponding to the predictors in X vanish. However
in LARS, we move along the Newton direction only until the LAR, LASSO or forward stagewise criterion
are met, after which we proceed with respect to a new set of predictors.

Numerically stable computation and efficient updating of the Newton direction is possible via the QR
factorization of X, in which X is expressed as the product of an orthogonal matrix Q and an upper
triangular matrix R. Once X is factored, the Newton direction can be efficiently computed by forming
u = QT r(β) then solving Rd = (u1, . . . , up)T (see, e.g. (Golub and Loan, 1996)).

Besides efficient solution of the Newton equations, the QR factorization has other advantages:

• numerical stability;
• allows detection of collinearity through small diagonal elements in R;
• can be updated efficiently to add or delete columns (predictors).

In the case of logistic LARS, the Newton equations are

XTdiag(s(β))Xd = XTD(β)X = XT r(β), (9)

where r and s are given in Table 5. Because of the nonlinearity, optimization with respect to the current
set of predictors is iterative, and can be accomplished by IRLS. Assuming none of the diagonal elements
of D(β) vanish, the Newton equations (9) can be written as a linear least-squares problem

XTD(β)X = XTD(β)1/2D(β)−1/2r(β),
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which can be solved via the QR factorization of D(β)1/2X, and as described above for the linear case with
r(β) replaced by D(β)−1/2r(β). When D(β) has small elements, we still want to form the QR factorization
of D(β)1/2X because it is a stable way to obtain the Cholesky factor of XTD(β)X, which is the just the
upper triangular matrix R of the QR factorization. We compute the Newton direction d by first solving
RTu = XT r(β), then solving Rd = u. Small elements in D(β) are then either indicative of a close fit to a 0
or 1 response, while small elements in the diagonal of R of are indicative of collinearity in the predictors,
which may not be present at the start of the iteration but may arise in the process due to nonlinearity. In
IRLS for ordinary logistic regression, the Newton directions d and coefficients β are repeatedly updated
β ← β + d until the gradient vanishes. In LAR we compute the ordinary coefficients, and take a LAR step
in the direction ∆β between the previous coefficients and the ordinary coefficients (this difference is the
sum of the Newton/IRLS steps). Other methods are are possible, e.g. the predictor-corrector approach of
(Park and Hastie, 2006a).

Computing LARS step lengths. After computing the LARS direction, a step length along that direction
is determined yielding either the LAR, LASSO, or stagewise coefficients. For brevity, we describe only the
LAR case in this section; for LASSO or stagewise the step is further restricted.

Let P represent current set of predictors. A unit step length along the Newton direction (linear case) or
along the sum of the IRLS directions (logistic case) would yield coefficients for which correlations (and
gradient) with respect to P vanishes. In LAR, we take the smallest step length along this direction until a
correlation in Pc is equal in magnitude to at least one correlation in P, but remains smaller than or equal
to all of the other correlations in P. Since P includes those predictors with correlations that are the largest
in magnitude after the previous step, and all correlations in P approach zero along ∆β, this condition is
guaranteed to be met.

It is important to include as new predictors all correlations that are close in magnitude to those of the
current predictors; otherwise the method will take small steps (we have observed this in the original
algorithm) and could possibly cycle due to roundoff error.

Gradient and Hessian computation for logistic LARS. For our logistic regression computations, we
need the gradient and Hessian of the criterion (8), which can be expressed in terms of either exp(xTi β) or
exp(−xTi β) and is given in Table 5. Because of the exponential, there is the potential for overflow and/or
underflow1 in these computations. For stability, we use the following strategy:

ri | ∇Flogistic ≡ −X
T r si | ∇2Flogistic = −XTdiag(s)X

xTi b ∈ [0,− log(flMIN)] yi − 1
1+exp(−xT

i β)

exp(−xT
i β)

[1+exp(−xT
i β)]2

xTi b ∈ [− log(flMAX), 0] yi −
exp(xT

i β)

1+exp(xT
i β)

exp(xT
i β)

[1+exp(xT
i β)]2

xTi b > − log(flMIN) yi − 1 0
xTi b < − log(flMAX) yi − 0 0

where flMIN is the smallest positive nonzero floating-point number, and flMAX is the largest positive
floating point number for which flMAX and −flMAX are both representable, respectively.2 The extreme
cases (which would not necessarily be rare because they correspond to close fits), can cause the Hessian
to be singular or nearly singular, in which case the numerically stable procedures described in this section
come into play.

1While occasional underflow is not usually problematic in computation, our computations are iterative procedures in which it
is possible that very large numbers of underflows could occur, causing the hardware to trigger an error condition.

2Machines in common use are IEEE compliant, so that to four decimal places log(flMAX) = 709.7827 and log(flMIN) =
−708.3964.
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Factor Variables. We took two approaches to handling factor variables; the first splits a factor into
dummy variables, the second keeps it as a group.

The first was suggested by our consultant Saharon Rosset:

About the factor issue: why not penalize all coefficients (for all levels of factor)? I don’t think
any contrast should be used—just include indicator variables for all levels of the factor (linear
dependence is not a problem, of course). Given the sparseness property of L1 regularization I
think that trying to add the whole factor as one variable would make no sense—let the penalty
select the relevant factor levels and add them to the model.

This is easy to implement, provided care is taken to handle collinear variables. It can also lead to more
interpretable models in some situations; e.g. when the resulting model has only a few non-zero coefficients
for a factor with many levels, that suggests to the analyst that the levels with nonzero coefficients stand
out.

However, possible non-uniqueness of the solution could make such interpretation misleading. For exam-
ple, with two levels, either level could be picked to have a nonzero coefficient, and the resulting predictions
and penalized objective function would be the same; for that matter, a linear combination of the two vec-
tors of coefficients would also yield the same predictions and objective. For p = 2 there is never a unique
solution, while for p = 3 the solution is always unique. For p > 3, there is a unique solution in some case,
but not in others. A possible remedy would be the addition of a small L2 penalty to make solutions unique
(this would be an elastic net).

The second approach is to treat a factor as a whole. Instead of the angle between residuals and a pre-
dictor, we work with the angle between residuals and the projection of the residuals onto a η-dimensional
space spanned by column vectors of Xj , where Xj is a design matrix for the factor, with η degrees of
freedom (e.g. η = 3 for a factor variable with four levels). In LAR, rather than working with correlation
when deciding which variable to add or in determining step length, we divide the correlation by

√
η, to

provide a penalty for the extra degrees of freedom.

In the linear regression case, we find that the coefficient paths are linear, but the step length sometimes
requires solving a nonlinear equation.

In the Lasso case, we propose to generalize the Lasso penalty θ
∑p

j=1 |βj | as in (5), to

θ

p∑
j=1

√
ηj‖zj‖, (10)

where zj is the contribution of variable j to the model and ‖zj‖ its L2 norm, after subtracting its mean.
This is equivalent for an ordinary predictor that is centered and scaled to norm 1, with zj = βxj . For a
factor, zj = Xjβj , where βj is a vector of coefficients of length η.

After implementing the LAR case and developing the Lasso proposal, we discovered that Yuan and Lin
(2006) proposed the group LAR and group Lasso; the former is equivalent to our method and the later
would give equivalent results, albeit with a different formulation. They note that the coefficient paths in
group Lasso are not piecewise linear.

Penalty based on partial predictions. Our formulation (10), which involves a penalty based on the
magnitude of partial predictions rather than coefficients, is interesting in its own right.

First, it makes it clear that one need not rescale predictors to have mean 0 and norm 1 prior to fitting the
model. (For variables that are not centered, the penalty would be be zj − zj , where zj is the mean of
vector zj .) This has computation advantages, because rescaling takes time and memory, particularly in
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IRLS, where every iteration would require rescaling with different weights. We anticipate taking advantage
of this in Phase II.

Second, this provides a way to extend LARS to include certain nonparametric methods. For example
generalized additive models (Hastie and Tibshirani, 1990), fit models of the form ŷ =

∑j
i=1 fj(xj) where

the fj are smooth functions, often selected by smoothing splines or other smoothers. (10) generalizes
immediately to θ

∑p
j=1
√
ηj‖fj(xj)‖, with ηj set to the equivalent degrees of freedom for the smoother.

5 Research Design and Methods

Our specific aims and preliminary timetable are listed in Section 2. Here we give additional information on
our plans.

First phase For the first phase, our plans are predicated on the fact that this is a rapidly developing field,
with the possibility of substantial outside collaboration from academics. Hence our efforts will be focused
on creating an attractive platform for collaborative work. There are two parts to this.

The first part is the creation of an extendable library. Our goal is to create a framework that is attrac-
tive for outside collaborators to work in and extend. This framework should include appropriate front-end
functions, e.g. lars for linear regression, glars for generalized linear models, and coxlars for propor-
tional hazards regression. These front ends should handle initial data massaging (subsetting, exclusion
of missing values if that option is chosen), selection of variables according to a user-specified formula,
processing of factor variables, polynomials, spline terms, interactions, etc., then call a fitting routine. In
contrast to the existing academic software, where functions are organized primarily for the convenience
of the developer, the front-end functions should mimic the user interface of functions analysts are used to,
such as lm, glm, and coxph, for linear, generalized linear, and cox regression, respectively.

The fitting routines are one opportunity for outside collaboration; they may be written by anyone, provided
they follow certain guidelines (to be developed) for input and output. In the prototype library, one of the
fitting routines is lars.fit.eh, the original LARS algorithm as coded by Efron and Hastie (Efron and
Hastie, 2003).

The fitting routines should accept certain common inputs, e.g. x and y. Argument type indicates the type
of fit to be performed, e.g. “lasso”, “lar”, “forward.stagewise”, “elastic.net”, “fused.lasso” (a routine need
not support all of these; it could support only one method, possibly of the author’s own invention). A fitting
routine may have other inputs, specific to the routine.

The fitting routines should produce an object with certain components including a matrix of coefficients
(one row for each step, and one column for each variable), vector of Cp values, vector of goodness of fit
statistics (e.g. residual sum of squares for the linear case), etc. They may have additional components.

The object must also have a particular class, e.g. “lars” for the linear case, and possibility additional
classes of the author’s invention. The purpose of these classes relates to the overall design of S. S
is an object-oriented system, and every object has a class. For example, objects created by the glm
function (generalized linear models) have class “gam”. A user typically calls the glm function and saves the
results in an object, say “fit”, then proceeds with additional analysis—printing the coefficients, performing
diagnostic plots, comparing the fit to fits with additional variables, etc. These operations are performed
by calling additional functions, e.g. plot(fit). plot is a generic function; it takes advantage of the class
of the object in deciding what operations to perform. Usually it does so by calling a method specifically
designed for that class. In this case, plot calls method plot.glm, which performs appropriate plots for a
“glm” object.

The library should have methods for “lars” objects for common generic functions such as plot, print,
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coef (to extract the coefficients), and others. Hence collaborators who write fitting methods that produce
“lars” objects, and have the right components for a “lars” object, need not duplicate our effort by writing all
these functions themselves.

On the other hand, the methods provide an additional opportunity for outside collaborators. They may im-
prove our methods, create methods for additional generic functions, or create methods for new classes—if
the object created by their fitting function has special features, they may give the object a class in addition
to “lars”, and write methods specifically for the class.

To summarize, we plan to create a library with some front-end functions to handle user input, some exam-
ple fitting routines, and some common back-end functions for plotting or other operations. Collaborators
may create their own fitting routines that follow our specifications, and may also contribute to the back-end
functions.

(Some text is omitted from this version of the proposal.)

The second part to our initial work is creating fitting routines. This involves refining our current prototype
routines (e.g. rewriting the accurate algorithm in FORTRAN), and ensuring that they meet our specifica-
tions, and adding key additional routines, such as LAR for Cox regression. This will be done primarily by
Fraley and the scientific programmer.

A major goal in the initial effort is to design a library that collaborators can add to without extensive work on
our part. Our experience in working with academic collaborators is that their code may be “90% complete”,
but that the remaining 10% of the work actually takes 90% of the overall time. We aim to set up guidelines
so that they can make contributions that require no or minimal effort on our part to complete. The fitting
routines we create should serve as examples.

The initial library should be in the form of a package that can be run from both S-PLUS and R. In order to
allow collaborators who currently use R to ensure that their contributions will run in S-PLUS, Insightful will
provide free time-limited S-PLUS academic licenses for collaborators, chosen by the PI.

Second phase A major goal of the second period is to begin to democratize the project — to move
beyond academic collaborators to broader use. Toward that end, we anticipate creating a preliminary
manual, and adding a graphical user interface (Windows S-PLUS version only), as well as refining the
earlier library based on feedback.

This period also marks the beginning of broader outreach. In the first period our outreach would focus on
collaborators; in this period we would reach out to additional groups, beginning with Insightful consultants
and pre-sales engineers, and giving conference talks.

We anticipate expanding our current website for this project, http://www.insightful.com/Hesterberg/
glars, to include links to documents that give an introduction to the area, citations and abstract, links
to web sites of collaborators and others doing related work, links to related S-PLUS and R software,
and other items to promote the project and the methodology. A list of open topics would be interesting
to graduate students and researchers, and provide a way to direct research in directions we feel are
important.

On the scientific side, we anticipate adding support for factor, polynomials, and splines to at least some
of the models, adding additional models, and probably improving our earlier models.

(Some text is omitted from this version of the proposal.)

Third phase A major theme for this period is to begin to shift from methodology to applications.

One step is creating an interface between S+GLARS and S+ARRAYANALYZER and BIOCONDUCTOR, that
would support important data structures common between both S+ARRAYANALYZER and BIOCONDUC-
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TOR including eset (basic Affy data storage) and marray (for cDNA or long oligo arrays). Example data
sets found in both S+ARRAYANALYZER and BIOCONDUCTOR could then be used to create case studies
of microarray data. other Insightful products—details omitted.

Another step is creating a large-data version of the core algorithms, and creating an interface to the
bigdata library in S-PLUS. This would be built on the large-data QR algorithm in the bigdata library.

This period should also mark the beginning of creation of training materials, incorporating the case studies.

Important methodological extensions include elastic net capability (for microarray data) and fused lasso
(for proteomic data). Additional extensions may include support for handling missing data using multiple
imputations (using the S+missing library), certain mixed-effects models, robust regression, and classifica-
tion; this choice will depend in part on additional developments in the field and work by outside collabora-
tors.

Note that to include LARS options in the full range of mixed effects and classification models is beyond
the scope of this project; in particular, some of our algorithms in those areas perform maximum-likelihood
estimation using Monte Carlo simulation, and to combine Monte Carlo-based fitting with LARS has not
even been considered yet in the research community, to the best of our knowledge.

(Some text is omitted from this version of the proposal.)

Final phase The primary goal for the final phase is to finish things off well—to refine the library and
interfaces based on feedback from users, and finish case studies and incorporate them into a manual,
finish training materials for short courses. While we create automated tests routinely as part of our nor-
mal development, we anticipate additional testing at this stage. Time permitting, we may add additional
algorithms, e.g. for a broader range of mixed effects models.

Role of Interns We are budgeting for graduate student and undergraduate interns.

The graduate interns will perform a variety of tasks, depending on their skills, including algorithm devel-
opment, incorporation of algorithms into the software package, statistical validation, and creating case
studies. Our plan is to seek relatively advanced graduate students who have begun research in the regu-
larized regression and classification (Some text is omitted from this version of the proposal.) We will place
a premium on at least one of the graduate interns having good writing skills, in order to make a strong
contribution to the manual, case studies, and training materials.

The undergraduate students will perform a variety of tasks, depending on their skills. Note that our intent
is not to have them do grunt work (though there may be some), but to perform more substantive tasks that
they find challenging and rewarding. For example, least angle methods are not so complicated to prohibit
their use in undergraduate courses; one undergraduate could work with Hesterberg to create a document
for use by undergraduate teachers and their students to supplement textbooks. Another task would be
to run simulations, to help quantify the performance of these methods in a variety of situations—to help
answer the signal-to-noise ratio question. (Some text is omitted from this version of the proposal.) We will
place a premium on at least one of the undergraduate interns having good writing skills.

The PI has had good experiences with undergraduate interns on two other SBIR-funded projects; in
one we created a bootstrap chapter for introductory statistics texts (Hesterberg et al., 2003, 2005), see
www.insightful.com/Hesterberg/bootstrap; the other for simulation-based econometric software, see
www.insightful.com/Hesterberg/econometrics. In both cases, the undergraduates had ownership of
longer-term tasks, rather than day-to-day assignments.
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