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This Small Business Innovation Research Phase I project is for research on confidence intervals
and hypothesis tests using fast bootstrap methods, and ways to make bootstrapping feasible for
large data sets.

Classical inference (intervals and tests) methods are known to be inaccurate when the underlying
assumptions are violated, the usual case in practice. For example, skewness causes the usual ¢-test
to be in error. The new methods would be an order of magnitude (power of y/(n), where n is the
sample size) more accurate in general than classical inferences.

Bootstrap methods are a promising alternative to classical inferences, and can handle complex
statistics including modern robust statistics, but are slow and have been little used in practice.
The methods proposed are 17 times faster than other bootstrap methods.

The methods are fast enough to be seamlessly incorporated into standard software, alongside
or instead of classical inferences. This provides statistical practitioners a realistic alternative to
easy but inaccurate classical inferences and non-robust methods. The competitive advantage to
the firm that does this first is a major opportunity. Furthermore, the large sample methods would
be attractive in the thriving data mining market.

Key words: bootstrap, resampling, tilting, importance sampling, least-favorable family, data
mining

Contents
1 Identification and Significance of the Opportunity 3
2 Background and Technical Approach 3
2.1 Bootstrap Tilting Inference . . . . . . ... ... o L oo )
2.2 Bootstrap-t . . . . . .. e e e e 10
2.3 Large-sample linear approximations . . . . . . . ... .. ... ... 0. 14
2.4 S-Plus and bootstrap software . . . . . . . . ... Lo oL 16
3 Phase I Research Objectives 17
4 Phase I Research Plan 18
5 Commercial Potential 19
5.1 Mission and Main Products . . . . . . . . ... o o o 19
5.2 Commercialization of Technology . . . . . . .. . .. ... .. ... ... ....... 19
5.3 Commercialization of fast bootstrap inference methods . . . . . . . . . .. ... ... 20
5.4 Commercialization of large sample methods . . . . . . .. . ... ... ... ..... 20
6 References 20



1 Identification and Significance of the Opportunity

The confidence intervals and hypothesis tests used most often in statistical practice are based on
normal approximations and theoretical derivations based on assumptions about the underlying dis-
tributions. Unfortunately, these classical methods are commonly used even when the assumptions
are violated, causing substantial errors. For example, the errors caused by skewness when per-
forming a t-test for the mean are O(n='/2) (n is the sample size), an order of magnitude larger
than O(n~"!) difference between using Students-t and normal quantiles. The actual Type I error
probability can easily be double the desired value. Similar situations exist throughout statistical
practice. There exists an opportunity to change that.

The bootstrap is a powerful tool for statistical inference that substitutes raw computing power
for theoretical analysis. It approximates the distribution of a statistic using only the observed data,
without resorting to asymptotic and other approximations simply for mathematical and computa-
tional tractability. Resampling methods (including the bootstrap) “replace ‘theory from a book’,
typified by t-tables and F-tables, by ‘theory from scratch’, generated anew by the computer for
each new data analysis problem” [10]. Bootstrap methods can often be applied in more complex
real applications than competing methods, without requiring the user to perform analytical calcu-
lations. The interest in bootstrap methods in statistical research has been enormous; a search of
the Current Index to Statistics yielded over 1500 articles published through 1996 on the bootstrap.
A number of existing bootstrap procedures are “second order correct” under general conditions, an
order of magnitude more accurate than classical methods. But the impact on statistical practice
has not been as great, due in large part to the slowness of bootstrapping.

We propose to develop bootstrap methods that are Fast, fast enough to be used routinely
and automatically alongside classical inferences. Whenever a statistician requests a t-interval or
hypothesis test—for one or two problems, linear regression, or a wide variety of other procedures—
the software could give the bootstrap tilting answers as well, and warn when the classical answers
may be inaccurate.

The new methods are based on bootstrap tilting, proposed not long after the invention of
the bootstrap [11] but nearly overlooked since then, with the notable exception of theoretical
work by [9], who show that bootstrap tilting intervals are second order correct. With the right
implementation the method can be must faster than other bootstrap methods, e.g. requiring only
60 bootstrap replications instead of 1000 for comparable accuracy. This is fast enough for routine
use, for software to provide by default without annoying users (depending on the size of the data
and speed of the statistic). Furthermore, some tilting methods should be more accurate than even
other existing bootstrap procedures.

In addition, we propose to make bootstrapping feasible in much larger problems without an-
alytical calculations. Tilting and many existing bootstrap methods require evaluating a statistic
say 60 or 1000 times for the actual bootstrapping, plus an additional n times. This is impractical
for large data sets where n is ten thousand or more. We propose ways to avoid the additional
effort. The methods are not limited to simple statistics, but also handle robust and other modern
statistical methods.

The proposed research, if successful, would offer a wide range of scientists and engineers much
better methods of inference than they currently use. The combination of speed, accuracy, and
ability to handle complex statistics and large data sets, can steer practitioners away from easy but
inaccurate classical inferences and non-robust methods.

The firm that first seamlessly provides these bootstrapping capabilities would enjoy a major
competitive advantage. Providing the methods for routine use inside a wide range of statistical
testing and modeling functions would justify a new release of the MathSoft product line and a
major marketing push, worth millions of dollars.

2 Background and Technical Approach
We begin with a short introduction to the bootstrap, then discuss new methods in subsequent
sections; for a more complete introduction to the bootstrap see [16]. We conclude this background



section with a discussion of S-Plus and current bootstrap software.

The original data is X' = (z1,z2,. .., Zy), a sample from an unknown distribution F'; which may
be multivariate. Let § = §(F') be a real-valued functional parameter of the distribution, such as its
mean, interquartile range, or slope of a regression line, and 6 = Q(F) the value estimated from the
data. The sampling distribution of 0

G(a) = Pp(6 < a) (1)

is needed for statistical inference. In simple problems the sampling distribution can be approxi-
mated using methods such as the central limit theorem and the substitution of sample moments
such as T and s into formulas obtained by probability theory. This may not be sufficiently accurate
or even possible in many real, complex situations.

The bootstrap principle is to estimate some aspect of G, such as its standard deviation, by
replacing F' by an estimate F. In this proposal we consider nonparametric problems for which F
is the empirical distribution. Let X™* = (X7, X5,..., X}) be a “resample” (a bootstrap sample) of
size n from F', denote the corresponding empirical distribution £*, and write 6* = Q(F*) In simple
problems the bootstrap distribution Pﬁ(é* < a) can be calculated or approximated analytically, but
it is usually approximated by Monte Carlo simulation—for some number B of resamples, sample
Ay for b=1,..., B with replacement from X', then let

B
G(a) = B~} ZI(@

b=1

< a). (2)

S %

There are two levels of approximation here—approximating (1) by Pﬁ(é < a), and estimating the
latter by Monte Carlo simulation. We consider both levels in this proposal.
Similarly the sampling distribution of a (possibly pivotal) statistic "= T'(F, F)

J(a) = Pp(T < a) (3)

can be approximated by Pi(T* < a) where T* = T (f?’ * F ), and implemented by Monte Carlo
sampling
K B
J(a) =B I(Ty < a). (4)
b=1

For example, the bias of 6 is the mean of the sampling distribution of T' = 6 — f, and can be
estimated by the mean of T*. Another example is the t¢-statistic used for bootstrap-t confidence
intervals [11], T = (9 — 0)/s(F) where s(F) is an estimate of the standard deviation of 6.

We restrict consideration to distributions with support on the observed data; methods described
below could be extended to parametric situations or smoothed bootstrapping, but that is beyond the
scope of Phase I of this proposal. Then we may describe a distribution in terms of the probabilities
p = (p1,...pn) assigned to the original observations; F' corresponds to py = (1/n,...,1/n). Let
f(p) be the corresponding parameter estimate (which depends implicitly on X’). Also write p* =

(M{/n,...,M}/n) for the vector corresponding to resample X*, where M;" is the number of times
x; is included in X'*. For later use, let
Ui(p) = lim e~ (8(p + €(0; — p)) — 0(p)) (5)

where §; is the vector with 1 in position ¢ and 0 elsewhere. When evaluated at py these derivatives
are known as the empirical influence function, or infinitesimal jackknife.

A fundamental assumption in the application of the bootstrap is that the theoretical bootstrap
distributions Pﬁ(é* < a) and Py(T* < a) accurately approximate (1) and (3), respectively; in
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other words that F' can substitute for the unknown F. Theoretical treatments of some aspects
of the assumption are summarized in [20], using Edgeworth expansions, and [41], using functional
analysis. We weaken the assumption by using the sampling distributions of 6* and T* under
certain distributions other than F which belong to “least-favorable” families (described below).
These families play a major role in other bootstrap procedures [11, 13, 8].

In Section 2.1 we discuss bootstrap tilting inferences, in which confidence intervals and hypothe-
sis tests are obtained using least-favorable families. We discuss using tilting to improve bootstrap-t
inferences in Section 2.2, and implementation issues for large samples in Section 2.3.

2.1 Bootstrap Tilting Inference

In this section we discuss bootstrap tilting hypothesis tests, which might prove to be both more
accurate and computationally more efficient than currently popular bootstrap inference methods.
We propose research dealing with implementation details that affect both asymptotic and finite-
sample accuracy and computational efficiency.

Consider testing Hp: 0 = 6y. In a one-parameter parametric problem one would compare the
observed 6 with a critical value of its null distribution, obtained by sampling from the parametric
distribution Fp, rather than Fj;. In a more general parametric setting, with one parameter ¢ of
interest and a number of nuisance parameters, one might find the maximum likelihood estimate
of the parameters under the null hypothesis, then compare the observed value of some statistic (a
pivotal statistic, likelihood ratio, or é) with its estimated null distribution. Again, sampling is from
a distribution consistent with the null hypothesis.

Similarly, bootstrap sampling for a hypothesis test should be from a distribution consistent with
the null distribution. This seems to conflict with the usual bootstrap practice of sampling from
the observed distribution, but in fact the bootstrap principle is to sample from the best estimate
of the underlying distribution, given the information available, which may include the constraint
implied by the null hypothesis. For instance [39, 40] sample in this way, for testing independence,
rotational invariance, symmetry, and similar problems. Others (e.g. [4]) sample in various ways
consistent with the null hypothesis in two-sample and multi-sample problems. Bootstrap tilting
hypothesis tests also sample this way, and were used by [45] for a one-sample mean and suggested
by [32] for comparing two means.

The maximum likelihood estimate of the distribution, consistent with Hy and with support on
the observed data, maximizes []p; subject to p; > 0, Y p; = 1, and O(p) = €. In the case of a
mean, 0(p) = Y. pizi, U;j(p) = z; — T, and the solution can be written in the form

pi=c(l—7(z;— 7)), (6)

where 7 is a “tilting” parameter and ¢ normalizes the probabilities to sum to 1. The value of 7 that
satisfies the last constraint is found numerically. These probabilities are a special case of what we
call “maximum likelihood tilting” (ML tilting), and are shown in Figure 1. Here the unweighted
sample mean is less than the null hypothesis value, so tilting places higher probabilities on the
larger values of # to make the weighted mean match 6.

In bootstrap tilting hypothesis testing, the null distribution of 0 is estimated by resampling
from the weighted empirical distribution, and Hy is rejected in favor of Hy: 6 > 6 if the estimated
p-value is less than «,

Py, (0" > 0) < a, (7)

where F’; is the weighted empirical distribution induced by tilting with parameter 7.

The procedure can be generalized to nonlinear statistics, and by substituting another single-
parameter family for the maximum likelihood tilting family. The chosen family should be least-
favorable, i.e. inference within a family is not easier, asymptotically, than in the full (n — 1)-
dimensional family. We consider four families in this proposal,

Fir:pi = cexp(tUi(po))
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Figure 1: Exponential and Maximum Likelihood Tilting for a mean.

Foipi = cexp(tUi(p))
Fs:pi = c(1—1Ui(po)) "
Fiipi = c(1—7U(p)) ", (8)

each indexed by a tilting parameter 7, where each ¢ normalizes the corresponding vector to add to
1. Fi1 and F» are well-known as “exponential tilting”, and coincide if 6 is a mean; these weights
are also shown in Figure 1. Similarly F3 and F, are ML tilting and are the same as (6) for a mean.
F4 gives the maximum likelihood solution for nonlinear statistics. In the sequel we write p, and
F. for the corresponding probability vector and weighted empirical distribution, respectively. Note
that 7 = 0 corresponds to py and F.

For any family, 7 is found numerically to solve

0(pr) = 0o (9)

and the decision to reject is based on the estimated p-value under weighted bootstrap sampling (7).

2.1.1 Bootstrap tilting intervals

Bootstrap tilting hypothesis tests are consistent with the bootstrap tilting confidence intervals
defined by [11], in that the test rejects Hy iff the confidence interval excludes 6y. After choosing a
least-favorable family, the lower limit of a one-sided (1 — «) interval is found by solving

Pr (6" > 0) = « (10)

in 7, then defining the lower limit as
0o = O(F;).

Upper limits are found similarly. [9] show that bootstrap tilting intervals are second-order correct
under general assumptions, i.e. that the one-sided coverage errors are O(n~!) (they consider only
Fi, Fa, and Fy). This is the same rate as for better-known procedures such as the bootstrap-¢ [11]
and BC-qa [13] intervals.

Bootstrap tilting corresponds to an exact method in single-parameter parametric problems,
where the lower limit of the confidence interval is defined to be that value 6, for which Py, (é* > é),

where 6 is the estimate from the observed data and 6* is the random estimate obtained from a new
sample. Here, by restricting to a least-favorable family, the problem is reduced to a single-parameter
parametric family.



2.1.2 Choice of least-favorable family

There are two important implementation decisions for either confidence intervals or hypothesis
tests: which least-favorable family to use, and how (10) is solved or (7) is evaluated. Investigation
of these details is the heart of our proposed contributions to bootstrap tilting inference.

The bootstrap literature contains little discussion of the merits of the different least-favorable
families, but simulations have tended to use JF; because it offers some computational advantages.
F4 corresponds to maximum likelihood estimation subject to a null hypothesis, and is the family
used in empirical likelihood (EL) inference [36, 37, 21]; both limit support to the observed values
and find the restricted maximum likelihood vector of probabilities. But where EL inference is based
on asymptotic approximations, in bootstrap tilting all probabilities are estimated by sampling. [7]
study bootstrap likelihood and EL, and discuss relative advantages of EL and bootstrap methods,
and [30] discusses connections between the bootstrap and EL.

We propose to compare the families, in terms of accuracy and computational efficiency. We
suggest that F4 should give the most accurate inferences in finite-sample problems—the actual
type I error and coverage rates should most closely match the nominal values. First, using deriva-
tives (5) evaluated at p; rather than pg, e.g. using F4 rather than Fj3, results in more conservative
inferences in nonlinear problems—wider confidence intervals and smaller type I errors. Since in
practice most bootstrap inferences tend to be anti-conservative with finite samples (see simulation
results collected in [41]), these more conservative inferences should be more accurate.

Second, ML tilting should be more accurate than exponential tilting. Taylor-series expansions
of the families in (8) in terms of 7 about 0 agree to the first two terms, but the quadratic term
for ML tilting is double that of exponential tilting. The result is apparent in Figure 1, where
the ML tilting probabilities are larger than exponential tilting probabilities at both extremes of
the distribution; they are smaller in the middle because the probabilities are normalized. When
sampling from weighted bootstrap distributions, using ML tilting gives 6* a larger variance, so that
confidence intervals are wider and hypothesis tests are less likely to reject Hy. Again, these more
conservative inferences should be more accurate. Furthermore, a result by [27] implies that when
f is the mean, Hj is true, and the weights are obtained by ML tilting so that ), p;z; = 6, then
the weighted variance Y, p;(z; — 0p)? has bias of order O(n?2), so that the bootstrap estimate of
the variance of the sample mean is biased by a factor O(n"2). In contrast the usual bootstrap
estimate of variance is biased by a factor n~!, as is the bias obtained using exponential tilting.
Similar results should hold for nonlinear statistics. The relatively small bias for ML tilting should
result in more accurate inferences.

However, using derivatives that implicitly depend on 7 can be expensive. Fo and F4 can be found
by minimizing the backward and forward Kullback-Leibler distances between p and pyg, respectively,
which requires constrained numerical optimization in (n — 1) dimensions. In contrast, F; and F3
require only solving univariate equations in 7. We propose using a two-step approximation to F»

or Fy: first tilt using U;(py) to find pgl), then calculate Uz-(p(Tl)) and tilt again to find an updated

p(Tz). Similar updating was used in another bootstrap context by [26], and in empirical likelihood
by [44].

2.1.3 Numerical solution for tilting—Importance Sampling Reweighting

The next major implementation detail is the numerical solution of (10). This involves finding the
value of 7 for which resampling from F’; yields a tail probability of «.

One approach is to sample from the weighted empirical distribution F; for different values of 7,
estimate the tail probabilities for each 7, smooth the estimated probabilities, and numerically find
the 7 for which the value of the smooth curve is . Because tail probabilities are relatively difficult
to estimate using Monte Carlo simulation, this requires a large number of resamples (typically
1000 [13]) for each candidate value of 7. This can be expensive. [8] suggest one alternative, the
“automatic percentile method”, which requires bootstrap sampling only from one candidate F;
(in each tail for two-sided intervals) in addition to sampling from F'; this would typically require
3000 resamples. The automatic percentile method may also be used as an iterative process, whose
fixed point is the bootstrap tilting endpoint; iterating more than once should give more accurate



endpoints, but requires more resamples.

A much more efficient approach [11] uses importance sampling reweighting (ISR), a non-
traditional application of importance sampling. We review this method here before turning to
its application in bootstrap tilting inference and later in bootstrap diagnostics. Variations have
appeared under other names, e.g. likelihood ratio sensitivity analysis, likelihood ratio gradient esti-
mation, the score function method, polysampling, likelihood ratio reweighting, importance sampling
sensitivity analysis, and importance reweighting [2, 38, 43, 24, 29, 6].

Importance sampling is traditionally used to obtain more accurate answers in Monte Carlo
simulation by concentrating effort on important regions in the sample space. In order to esti-
mate an integral [Y(X)f(X)dX one could generate B observations from density f and com-
pute the average observed value of Y, B~! Ele Y,.  Alternately, by rewriting the integral as
JY(X)f(X)/g(X))g(X)dX, where g dominates f, one could generate observations from ¢, and
report the average observed value of (Y f/g). If g is well chosen, so that g is larger than f in
“Important” regions where Y is relatively large, then (Y f/g) has smaller variance (under g) than
does Y (under f) [23].

The name “importance sampling” and the association with estimating integrals obscure the
more general utility of the procedure. The procedure utilizes samples from a “design distribution”
g in order to estimate the distribution for Y that would be obtained under sampling from the “target
distribution” f. It need not be the case that f is fixed and ¢ is chosen for variance reduction; in
bootstrap tilting g is chosen for convenience, and a single set of observations (resamples) from g is
used for estimation under an infinite number of target distributions.

[11] lets the design distribution be F, and generates a single set of B resamples by simple
bootstrap sampling (with equal probabilities). Let M, be the number of times z; is included
in X. Then for any target distribution be F,, with probabilities p; on the observed data, the
likelihood ratio W = f/g for A} is

n
Wy = [ (pi) > (11)
=1

For any 7, an estimate of the left side of (10) is
Pp (0> 0)=B""> WyI(6* > 0). (12)

This procedure has a number of advantages. Sampling is simpler because no weights are in-
volved, and a single set of resamples is used for both sides in a two-sided confidence interval.
The estimated tail probabilities are a smooth monotone function of 7, simplifying root-finding and
eliminating the need for smoothing. Finally, by a fortunate coincidence, the unweighted empirical
distribution is a well-known, nearly optimal, design distribution for the traditional role of impor-
tance sampling as a variance reduction technique, at least for the mean and exponential tilting.
The advantage relative to simple Monte Carlo sampling is by a factor of about 17 for estimating a
tail probability that is about 0.025. Thus, where B = 1000 replications are required for sufficient
accuracy for other bootstrap confidence intervals based on percentiles [13] 60 might suffice here.
This is a major computational savings, that appears not to be mentioned in the literature except
in the forthcoming [30].

The computational advantage is even greater relative to the bootstrap BC-a interval [13], the
most common second-order-correct bootstrap interval (because zj is estimated from bootstrap
results). The results of small simulation comparing the accuracy of bootstrap tilting confidence
intervals with B = 100 replications to BC-a intervals with B = 2000 are shown in Table 1; the
tilting intervals are more accurate.

Figure 2 shows the bootstrap distribution for the treatment coefficient in a Cox proportional
hazards regression (the center curve), together with two bootstrap distributions obtained by tilting

(using ISR) such that the probabilities of falling above the original 6 (shown by a vertical line) are



Table 1: Simulation Variability

Method p=.025 p=05 p=.95 p=.975
Var of BC-a, B = 2000 1.60 1.44 4.65 5.11
Var of Tilting, B = 100 1.16 1.43 2.86 2.48
Relative Efficiency 28 20 33 41

Variance of BC-a and Bootstrap (Exponential) tilting confidence intervals for the mean, n = 11, data from
[18]. B is the number of bootstrap samples used. The relative efficiency is ratio of variances, corrected for
the difference in sample size; this gives the relative number of bootstrap samples required for comparable
accuracy.
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Figure 2: Importance Sampling Reweighting. The three curves are obtained from the same resam-
ples, but reweighted to tilt the distribution left, not reweighted, and right. Vertical lines are at 0
and the two values of 8(F;). In the left panel 0 is the treatment coefficient for a Cox model for the
head and neck data, in the right panel 8 is a nonlinear transformation of the coefficient.

about 0.025 and 0.975 for the left and right curves, respectively. All three distribution estimates
make their vertical jumps at the same locations, but the sizes of the jumps for the two outer curves
depend on the weights W;. The leftmost curve takes large jumps at the left and is inaccurate there,
but is very accurate near 6, so the probability in (10) is accurately estimated.

The data used here are provided by Dr. Michael LeBlanc of the Fred Hutchinson Cancer Re-
search Center, consisting of survival times of 158 patients in a head and neck cancer study; 18 of the
observations were right-censored. The control group received surgery and radiotherapy, while the
treatment group also received chemotherapy. The statistic 6 is the treatment coefficient in a Cox
proportional hazards regression model. The coefficient is the log of the estimated ratio of the haz-
ards rates between groups; some users may be interested in bootstrapping the hazard ratio exp(0)
directly, a nonlinear transformation of #. The right panel is for such a transformation (actually
exp(40), for greater nonlinearity for presentation purposes), and illustrates that bootstrap tilting
is invariant under transformations—the endpoints of a confidence interval for this transformed
coefficient are the same as the transformation of the endpoints for the untransformed coefficient.

However, there are a number of factors that may increase the computational burden. First, if
the derivatives (5) are estimated numerically (e.g. using the jackknife), an additional n resamples



are needed, and n may be much larger than 60; we propose a way to mitigate this in Section 2.3.

Second, estimates can be unstable if 6 is nonlinear. In the head and neck example 6 is nearly
linear (correlation 0.993 between 6* and a linear approximation), so all of the large jumps in the
leftmost curve in Figure 2 occur on the left side of that curve. But for nonlinear situations large
jumps could occur on the right, where accuracy matters. We have observed this when bootstrapping
the correlation coefficient for the law school data [12]. We propose to use a defensive mixture
distribution [27] that produces estimates that are more robust against nonlinearity. This involves
using a small number of resamples from F, in addition to the resamples from F; if AB of the B
resamples are from F, then the jump size W;/B is bounded above by (AB) . Using a defensive
mixture has another advantage. The weighted cumulative distribution function with weights W3 /B
has the range [0, B~ 3", W] rather than [0,1], and the upper limit can be very different from 1,
e.g. over 10% off for one of the curves in Figure 2. The upper limit is much less variable when
defensive mixtures are used. The curves actually plotted in that figure were simply normalized
to the range [0, 1], but this reduces the accuracy for estimating tail probabilities; with defensive
mixtures we may use more accurate normalization methods [27].

Third, F' is a nearly optimal design distribution (for nearly linear problems) for exponential
tilting, but not for ML tilting; a more accurate design would involve exponentially tilting the
ML tilting probabilities back to the center, e.g. p; = p;c’ exp(7'U;) where p; is obtained by ML
tilting, ¢’ is a normalizing constant, and 7’ tilts the distribution back toward the center so that
0(P*) = . This design places slightly higher probabilities on the more extreme observations (large
and small values of U;) than does F. We propose to investigate this design, and an alternative
that uses exponential tilting but with inferences adjusted to approximate ML tilting; exponential
tilting has an additional advantage, that that the computation of (11) is particularly convenient
[11], W), = (nc)"™ exp (32 My, Us).

ISR can also be used to estimate the p-value for a bootstrap tilting hypothesis test.

In summary, bootstrap tilting confidence intervals and hypothesis tests are potentially very
accurate and computationally efficient. They are second-order accurate, and may have smaller
errors of order O(n~!) than do other second-order accurate procedures, particularly when family
Fuqis used. The use of ISR makes their implementation computationally efficient, perhaps requiring
only 60 resamples rather than 1000. However, further work is needed before these procedures are
ready for widespread use with complex statistics. Our plans are described in Section 3.

2.2 Bootstrap-t
In this section we describe the bootstrap-¢ interval, two problems with it, and possible improvements
based on tilting.

Let T = (0 — 0)/s(F) where s(F) is an estimate of the standard deviation of f; the lower
endpoint of a bootstrap-t (1 — «) confidence interval is

Ly=0—s(F)J (1 =) =0 - s(F)T{p,_a) (13)

The procedure is second-order correct under general circumstances [19], but has exhibited poor
finite-sample performance, e.g. it “fails spectacularly” [20] when applied to the correlation coeffi-
cient.

Transformation invariance The problem in [20] is that the interval is not transformation-
invariant. Let t)(f) be a smooth increasing transformation, and let 7" = ((0) — ¥(0))/sy(F)

where s¢(ﬁ) is an estimate of the standard deviation of 4(6); the bootstrap-¢ endpoint for ¢ (6) is
not in general equal to 1) of the endpoint for 6. It is generally recognized that a variance-stabilizing
transformation should often be used first. Let v(#) = Var(|#) denote the variance of 6 as a function
of . Then an approximate variance-stabilizing transform v can be defined as

0(0) = [ (o(0))"2a0: (14)
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the indefinite integral is evaluated numerically.

[42] estimates a variance-stabilizing transformation from the data, using the double bootstrap.
For some number B of first-level resamples (say 100), he generates By (say 25) second-level re-
samples, lets @, be the sample variance of the values of 6** from the second level resamples from
Ay, performs a scatterplot of w;, against ég‘ for b=1,..., By, smoothes the scatterplot to obtain v,
then uses (14).

As an aside, we note that [42] does not actually use bootstrap-t intervals on the transformed
scale, but rather a basic bootstrap interval (defined below) on that scale.

We propose an alternate procedure, using bootstrap tilting. This uses only a single set of boot-
strap observations. For any 7, compute probabilities p, (8), the corresponding weighted statistic
0T = O(F;), the bootstrap weights (11), and let

5(0;) = Varg., (6%)

be the variance of the weighted bootstrap distribution. This defines a relationship between variance
and 0, implicitly in terms of 7. For example, in Figure 2 we see the cumulative distribution functions
for the weighted bootstrap distributions for three values of 7 (79, and two values chosen so that 6,
and 0, are at approximately 0.025 and 0.975 confidence limits for #) for each of two statistics. In
the right panel the variance of the weighted bootstrap distribution is strongly dependent on 6, in
the left panel nearly independent.

In Figure 3 we see the functional relationships between variance and 6 estimated by the different
procedures. The top left panel is for the data of [18], (9.6, 10.4, 13.0, 15.0, 16.6, 17.2, 17.3, 21.8,
24.0, 26.9, 33.8). The statistic is the mean. The positive slope of all curves in the middle is due to
the positive skewness of the data; the corresponding variance-stabilizing transformation would be
concave. Both tilting procedures produce somewhat higher estimates of variance than the double
bootstrap for values of @ farther from 6. We investigate this further in the remaining three panels in
the figure. Here the data are artificial, 20 samples of size 16, each formed by reflecting 8 standard
normal variates about the mean, then standardizing to variance 1. This is a situation in which
the true variance is constant, not dependent on 6. The use of symmetric data ensures that the
estimated variance relationships have slope 0 at § = 0 (except for simulation error in iterated
bootstrapping), making it easier to view the second derivatives of the curves. In this example we
use By = 500 and By = oo (analytical calculations replace the second level of bootstrapping);
even with these relatively large values for B; and Bj the iterated bootstrapping curves exhibit
considerable variability. The tilting curves are more stable.

The exponential tilting curves tend to have negative curvature, and the ML tilting curves
positive curvature (near the center); this suggests that a family intermediate between exponential
and ML tilting might be preferred for variance stabilization, because the ideal curve in this artificial
situation is known to be flat.

In summary, it appears that the tilting methods give more stable results in estimating variance-
stabilizing transformations, with far less computational effort, and that a family intermediate be-
tween the exponential and ML tilting families may give the least-biased results.

Bootstrap-t intervals too long The second criticism of bootstrap-t intervals is that they tend
to be too long [13, 34, 41]. This is generally attributed to instability in the estimates of standard
deviation. Our diagnostics suggest another explanation—that the bootstrap standard deviations
are too small, when 6* is not close to f. See e.g. the smoothed double bootstrap curve in Figure 3.

In retrospect, this is not surprising. Consider a simple example. Recall that X and s are
independent when sampling from normal populations. But when taking resamples from normal
samples, X* and s* are not independent—s* tends to be smaller when (X* — X) is large; see
the second panel of Figure 3. When computing a bootstrap-¢ statistic, the standard error in the
denominator tends to be small when the numerator is large, causing the distribution of 7* to have
long tails.
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Figure 3: Estimating Variance as a function of #. The top left panel shows the estimated functional
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the sample variances of 25 second-level resamples against 6 for the corresponding first-level resam-
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We propose to adjust the denominator based on the ratio of the exponential and ML tilting
estimates of 0(6*).

Implementation by ISR Both variance-stabilization and denominator adjustment can be im-
plemented by ISR, but in Figure 2 the two outer curves are inaccurate over half of their ranges.
This is due to the ISR method used to create this plot, in which the design distribution was F. An
alternative is to actually sample from the corresponding distributions F;, and F., (here 7y is the
negative value that gives the left curve, and 75 the positive value that gives the right curve).

We propose to develop a more accurate procedure that shares resamples across the three dis-
tributions, using ISR with a mixture design distribution using roughly equal numbers of resamples
from F and each of the two tilted distributions. The three distributions F;,, F, and F}, can ef-
fectively share resamples, except on the outside of the two outer distributions. This would make
the center curve extremely accurate in both tails, and the two outer curves extremely accurate in
one tail each and would not hurt their accuracy in the other tail. Thus the number of resamples
required is 3B (and B could be reduced). Distribution function curves for intermediate values of 7
could also be estimated using ISR without further resampling.

Bootstrap Tilting-t Interval A common use for iterated bootstrapping is to calibrate bootstrap
confidence interval procedures [34, 3]; giving an increase of one order of accuracy for every level of
bootstrap iteration under fairly general circumstances [22], but this is computationall expensive.
Bootstrap tilting might serve the same role, at least for one level. Indeed, it already has—we show
here that bootstrap tilting confidence intervals can be interpreted in this way. Let T = T(F, F) =
6 — 0, and T* = o — é, and let jfl(q) denote the ¢ percentile of .J. Treating T' as a pivot yields
the approximation P(§ — 60 < J1(¢)) = ¢, which can be inverted to yield confidence intervals. The
lower endpoint of a one-sided (1 — «) confidence interval and its Monte Carlo approximation are

Lo=0—-J'(1—0a)=0- (éfBa_a)) —0) =20~ ézﬁB(l—a)) (15)

where éz‘k) is the k’th order statistic of the bootstrap distribution. This interval is relatively
common— 41] (page 141) indicate that “this method is used in practice more frequently than
any other bootstrap method, especially when the problem under consideration is complex”, but
often appears in the bootstrap literature with no name. We follow [6] in calling it the “basic
bootstrap”.

Now suppose that .J is estimated by sampling not from F, but from Fj, where 0(F;) equals the
yet-to-be-determined endpoint Ls. In principle, this should be more accurate; for example, this
yields exact endpoints in one-parameter parametric problems. Now Jgr, becomes the distribution

of §* — Ly when sampling from F;, and the a quantile of this distribution is the a quantile of 6,
minus L. In place of (15), we solve

Ly = 06—
— §_

Tt —a)
(Grl(1—a) - Ly).
Simplification yields the bootstrap tilting equation (10)!

In other words, bootstrap tilting inference is equivalent to using T' = T(F,F) = 6 — 0 as a
pivotal statistic, calibrated by estimating the distribution of 7" using bootstrap tilting calibration
(BTC) at the endpoint. This improves the accuracy from first order, with one-sided coverage errors
of O(n="/?), to second order.

We propose applying BTC to the bootstrap-¢ interval (13) to create the “bootstrap-tilting-¢”
interval; [33] use a similar procedure in a parametric context. The calibrated version would solve

~

Ly =0(F;) =0 —s(F,)J;' (1 - a).
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Figure 4: Approximations to influence function values, based on the positive jackknife (left panel)
and a linear regression with low degrees of freedom.

The bootstrap-t interval is already second-order correct under general circumstances (e.g. [20]);
the calibrated version might be third-order correct. Even if it is not, it should result in a more
accurate finite-sample procedure, in two ways. First, it should reduce the finite-sample inaccuracy
that results from the lack of transformation-invariance of the bootstrap-t. Second, its denominator
(standard error) would not be too small when its numerator is large. In this case the numerator is

0* —O(F,) (rather than 0* — ), and a “large” numerator means that 6* is far from 0(F;) but close

to 0 (close on the side of jFT that determines the critical value used for confidence intervals), so
denominators are not deflated.

In summary, bootstrap tilting offers ways to overcome two known problems with bootstrap-¢
intervals—lack of transformation invariance, and too-long intervals—in a computationally efficient
way. Furthermore, combining tilting and bootstrap-t ideas yields a fast new bootstrap-tilt-¢ interval
which may be more accurate in finite samples than other available intervals.

2.3 Large-sample linear approximations
In this section we consider two issues that arise in practice when bootstrapping large data sets—
estimating the values of U; (5) cheaply, and obtaining standard errors for use in bootstrap-¢ intervals.
We are interested in methods that users may apply without doing analytical calculations, such
as those indicated in (5). The derivatives can be approximated using finite differences, such as
jackknife and positive jackknife [12] and butcher knife [26] approximations. The positive jackknife
approximations are shown in the left panel of Figure 4, for the treatment coefficient for the head
and neck data. Calculating these required an additional n» = 158 function evaluations, in addition
to the B evaluations required for the bootstrap. This is expensive for large n and complex 6.
An alternate approximation to (5) was proposed by [14], involving linear regression of the form

n
0, = Bipy; +e
j=1

[26] found improved performance by replacing ég‘ with 1/)(@,’;‘ ) for a linearizing transformation 1,
estimated from the data. These methods do not require n extra function evaluations, but do use
linear regression with n coefficients, which requires B to be very large for accurate estimation if n
is large.
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We propose here a regression method on fewer degrees of freedom. Let h be a “design trans-

formation,” such that h(xz;) is a p-dimensional vector with p < n, and let hz =n tyr, h(x;)‘,j) =

i=1 Py ;h(z;) be the vector containing the average of the design transformations for all observa-
tions in a resample b. A regression of the form

p
05 = Bily; +
j=1

yields regression coefficients. Optionally, 8* could be replaced with z./)(é*) in the regression. Let
L; = E?Zl Bih(z;);, then (Li,..., Ly) approximates (Uy,...,U,), modulo a linear transformation.
An example for the head and neck data, based on a linear regression with p = 12 terms (11 degrees
of freedom), is shown in the right panel of Figure 4.

The design transformation should be chosen so that o* = ?:1 ﬁjﬁ;, for some unknown co-
efficients ;. It should include an intercept, dummy variables (for discrete components of x;),
continuous variables and/or polynomial, b-spline, or other nonlinear transformations of the contin-
uous variables, and possibly interaction terms. In this example we split the data into four groups
based on treatment and censoring status, used separate intercepts for each group, used separate
slopes for the two censored groups, and used linear b-splines with two interior knots for the two
non-censored groups, for 12 total degrees of freedom. The result is a slightly less accurate—the
correlation between 6* and the regression approximation 2?21 I:jp;‘- is 0.989, while it is 0.993 for

the jackknife linear approximation 2?21 ﬁjp;-‘—but saves 158 function evaluations. Choosing the
design transformation is an art. It might be (partially) automated using stepwise regression or
multivariate adaptive regression splines [17]. Diagnostics to guide analysts would be helpful.

An alternative procedure, based on clustering the data and regression against the cluster pro-
portions, did not work as well. The estimates of U; are constant within each cluster, whereas the
linear regression procedure allows for linear (or quadratic, etc.) relationships within clusters.
2.3.1 Standard errors for the bootstrap-t
The bootstrap-t procedure requires an estimate s(ﬁ' ) of the standard error of é, and the bootstrap
analog s(f?’ *). Where no easier estimate is available, a standard estimate is

S(F) = [n=2 3" U (po), (16)
S(F) = [ S U2(p). (17)

When U; is approximated by finite-difference methods such as the jackknife, this requires n addi-
tional function evaluations for the original sample, and nB total additional evaluations for the B
resamples. This is very expensive for large n and B and complex 6.

We propose to eliminate the nB additional samples required to calculate all of the U;(p;) by
re-using the values of U; from the first-level sample. Consider the linear approximation

0(p) = 6(po) + Z Ui(po)p;- (18)

with bootstrap analog

Suppose that the approximation is accurate for both first and second-level resamples, i.e. if either
p* or p** is substituted for p. Using the known covariance structure of p*, this approximation
leads to (16) (except for a factor of n/(n — 1)), and also yields an approximation to (17)

$(F7) = \/n—QZMi*(Uz-(p(J) -7y (19)
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where M is the number of times z; is included in X'* and U= PiUi(po). In contrast, a variation
of (18) with pg replaced with p* yields (17).

Note that the use of (19) requires the n additional function evaluates for evaluating U; (pg)
but not the additional nB evaluations required for evaluating each U;(p;). This would give major
computational savings, making the bootstrap-t¢ interval more practical.

However, this procedure may work poorly where (18) is inaccurate, particularly for second-level
resamples. A remedy is to work () rather than 6 directly, where 1) is a linearizing transformation

such that
$(0(P)) = $(0(po)) + D Uj(po)pi
13

where U’ is like (5) but evaluated for () rather than 6. [26] obtains linearizing transforma-
tions based on a scatterplot smooth of 9;‘ against Y, U;j(po)p; ;- This does not require additional
functional evaluations. 7

In summary, we propose two methods for reducing the computational cost of bootstrap tilting
and bootstrap-t intervals, for problems with large n and complex statistics for which analytical
derivatives are unavailable.

2.4 S-Plus and bootstrap software

The software that would be developed under this proposal would become part of S-Plus, is an
extremely powerful and flexible data analysis environment, built on the S language originally de-
veloped at Bell Labs [5], which includes some 2000 built-in functions covering exploratory data
analysis, data management, high-level programming, etc.

S-Plus is extensible, using functions written in the S-Plus object-oriented language, C and
Fortran. There is an enthusiastic user community; users have posted 245 packages to statlib (see
http://lib.stat.cmu.edu/S), most containing multiple functions. Many new statistical procedures
are made available for general use in this way.

The design of S-Plus is uniquely suitable for bootstrapping. S-Plus is a high-level programming
environment, not just a statistical package. Efron, inventor of the bootstrap, noted [15] that “my
bootstrapping has increased considerably with the switch to S, a modern interactive computing
language. ... My guess is that the bootstrap (and other computer-intensive methods) will really
come into its own only as more statisticians are freed from the constraints of batch-mentality
processing systems like SAS.” [35] adds “The S language may continue to provide the simplest
bootstrap programming in the future.”

That prediction has come true. S-Plus now includes an easy-to-use bootstrapping function; the
first two lines here perform bootstrap sampling, save the results in an object “BootstrapResults,”
and create a histogram of the bootstrap distribution with overlaid density curve:

BootstrapResults <- bootstrap(lung.survival, mean, args.stat=list(trim=.25))
plot( BootstrapResults, main="Trimmed mean survival time")
summary ( BootstrapResults )

The summary command prints a number of results including the standard deviation and percentiles
of the bootstrap distribution, and the bootstrap BC-a [13] confidence intervals. This bootstrap
function can be used with virtually any statistic, including those defined by users, and is accessible
through a graphical user interface.

In addition, both [16] and [6] use S-Plus in their books, and provide sets of bootstrap functions
written in S-Plus to accompany their books.

There are no competitors who can provide the nearly the same level of bootstrap capability.
The design of most packages effectively precludes this.

Further bootstrap software is being developed at MathSoft, under an NTH SBIR 2R44CA67734-
02 project “Statistical Software for Resampling Methods”. This software will provide a greater
variety of bootstrap methods, variance reduction techniques to make the bootstrapping faster,
training materials, etc., with a particular emphasis on biostatistical applications. That project
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includes the implementation of the bootstrap tilting confidence interval as a post-processing step on
the output of the bootstrap function, using a certain one-step approximation to Fy, implemented
by importance sampling using design distribution F (18 lines in Section 4.1.2 of that proposal).
That work will be performed prior to work under this proposal, and is not included in the Specific
Objectives or Research Plan below.

That project, and the software that accompanies [6], provide a sound foundation for the current
proposal: (1) Some variance reduction techniques already developed could be used with the new
methods to further reduce the necessary number of bootstrap replications even below 60. The no-
table exception is importance sampling, because ISR for tilting and bootstrap-tilting-¢ is inherently
more efficient than the importance sampling that can be done for other bootstrap methods. (2)
Some of the new work can use data structures already developed. (3) The new general-purpose
function could use the tilting function mentioned in the previous paragraph as a model. (4) Material
on the new methods could be added to existing documentation and training materials.

We propose to go beyond these foundations, in ways we describe next.

3 Phase I Research Objectives

Most of this proposal deals with new or forgotten bootstrap inference methods. There is always
resistance to new methods, particularly if they require time and energy to learn and use. In order
for the proposed work to be a technical and commercial success,

e the new methods must be substantially better than other available alternative, in terms of

speed and/or accuracy,

e the methods must be available in easy-to-use software, preferably provided automatically,

e the wide statistical community must learn about and accept the methods.
In Phase I we plan to address the first point, demonstrating technical feasibility by showing that
the new methods are better, and to begin to address the second and third points, will be further
addressed in Phase II. These lay the groundwork for the last point.

Specific Objectives for Phase I We offer the following specific objectives:

e Perform initial simulation studies to compare the four tilting families (8) with respect to sta-
tistical accuracy and speed. Investigate implementation methods, including different design
distributions for importance sampling, nonlinear transformations of the tilting parameter 7
to make the numerical solution of (9) better conditioned, and hybrids of the exponential and
ML tilting families, to try to capture the speed of exponential tilting and the accuracy of ML
tilting.

e Perform initial studies to investigate variance-stabilizing transformations by tilting and impor-
tance sampling reweighting, comparing exponential and ML tilting, and importance sampling
design distributions. Investigate using the difference between exponential and ML tilting es-
timates of variance given 6 in order to adjust the denominator of bootstrap-¢ statistics.

e Perform initial studies for the bootstrap-tilting-¢ confidence interval and hypothesis method.

e Perform initial studies to investigate the accuracy of large-sample linear approximations.

e Investigate approximating standard errors for bootstrap samples using the influence values
from the original sample, with and without linearizing transformations.

e Summarize the results of the above investigations in one or more technical reports.

e Perform a final simulation study, carefully comparing the methods found to be best in the
initial studies to extant methods, including normal-based inferences, bootstrap BC-a meth-
ods, bootstrap-t, empirical likelihood, and bootstrap ABC methods. Test problems would
include the sample mean, median and other robust alternatives, least-squares and robust lin-
ear regression, generalized linear and generalized additive models, and correlation. Prepare
a technical report, and a report for submission to a peer-reviewed statistical journal. This
report would focus on statistical accuracy and give results for computational efficiency, but
not describe implementation methods in detail.
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Prepare software for use by beta-testers that implements the best methods. This software
would likely be in the form of one general-purpose S-Plus function that implements the
methods for arbitrary statistics, and one example with the methods built into an existing
function such as the t.test function for inference for a mean.

Obtain feedback from at least 15 beta testers and statistical researchers, on their experience
with the beta software and impressions of the reports.

Present results at one or more conferences.

This list is ambitious. However, the bulk of the work would be done in S-Plus, an efficient lan-
guage for prototyping new ideas. The lowest priorities are improvements on the usual (non-tilting)
bootstrap-t (variance stabilization, denominator adjustment, and approximate standard errors),
because the bootstrap-t does not offer the inherent computational advantage of tilting.

Phase IT Further work, to be performed in Phase II, includes:

Implement the best methods more carefully in a general-purpose S-Plus function. This coding
would be done primarily in the S-Plus language, to provide flexibility both in terms of what
statistics may be handled, and to allow the researchers to experiment with and improve our
methods.

Build the best methods into functions for specific purposes, such as functions that perform ¢-
tests, linear and nonlinear regression, and robust location and regression methods, for seamless
use by practitioners who already use these functions; by default the new inferences would
be provided in addition to existing inferences, with warnings whenever the new inferences
indicate that the other inferences may be inaccurate.

These implementations will take advantage of analytic influence functions evaluations and
other tricks to make these special-purpose implementations faster. Much of this coding would
be done in C or Fortran for speed.

Add the best methods to selected statistical functions in MathSoft’s MathCad and Axum
products.

Modify some existing functions in S-Plus to allow user-supplied weights, which is necessary
for the tilting methods to work.

Investigate ways to choose the design transformation for large-sample linear approximations
automatically, or let the user specify it using the formula language in S-Plus.

e Incorporate the software within a graphical user interface.
e Prepare documentation aimed at the general statistical audience.
e Develop extensions to handle stratified-sample problems, including two-sample tests. This

should be relatively straightforward, making use of multi-sample influence functions or ap-
proximations.

Develop extensions to multiple-parameter problems such as analysis of variance for categorical
explanatory variables and y? tests of independence in contingency tables. This may not be
straightforward. It should be possible to solve the multi-parameter analog of (9), by letting
7 have dimension equal to the number of parameters to be tested. However, there is not a
simple analog to the p-value (7) in multi-parameter problems. Using empirical likelihood to
determine shapes of regions may provide an answer.

Extensions to handle the smoothed bootstrap. This should be straightforward, at least in
simple problems. Exponential tilting may be more accurate than ML tilting when combined
with smoothing.

e Extensions to handle time series and other dependent data. This is not straightforward.
e Extensions to parametric problems.

4 Phase I Research Plan

The work would be carried out by Dr. Hesterberg and a programmer. The anticipated timetable
for this work is shown in Table 2.
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Table 2: Time line for Phase I work

Task Month
1 2 3 4 5 6

Tilting H PH
Boot-t improvements H PH
Boot-tilt-t H HP PH
SE for boot-t H PH
Large-sample approx H PH
Study best candidates PH PH
Write reports H H
Beta software HP PH PH
Feedback H H

“H” denote Hesterberg and “P” denotes programmer, with the person spending most time listed first.

Initial investigations will be begun by Hesterberg, later with the assistance of the program. The
programmer has the primary responsibility for the large-scale simulations of the best candidates
from the initial investigations.

Investigation of large-sample approximations occurs late because that work is not a prerequisite
for other work. This work may be moved up so the methods can be included in the reports and
beta software.

5 Commercial Potential

5.1 Mission and Main Products

MathSoft Data Analysis Products Division’s primary mission is to develop, market, and support
cutting edge scientific computing software environments for high-interaction graphical analysis of
multivariate data, modern statistical methods (e.g., robust and nonparametric methods), data
clustering and classification and mathematical computing.

One of MathSoft’s main products is the S-Plus interactive computing environment for graph-
ics, data analysis, statistics and mathematical computing. S-Plus is a super-set of the S object-
oriented language and system developed at AT&T Bell Laboratories [1]. MathSoft’s customer
base represents almost every major industry, with particular strength in high-tech manufacturing,
biotechnology, engineering and finance. S-Plus is available in both UNIX and Windows versions.

While S-Plus has traditionally held the higher end of the statistical market, MathSoft is reaching
out the a broader market, with a new easy-to-use graphical user interface (GUT), broader marketing,
the creation of lower-cost “student” and “standard” versions, and other initiatives. There are
currently about 20,000 users for S-Plus, and this number is growing rapidly. MathSoft is also adding
statistical capabilities to its other main products—MathCad, a mathematical analysis package with
1,100,000 licences sold, and Axum, a technical graphics package, with 25,000 users.

The company has well-established teams for software development, quality assurance, market-
ing, sales, and teaching short courses.

5.2 Commercialization of Technology

MathSoft has an outstanding record in the commercialization of advanced data analysis technol-
ogy. Our core product, S-Plus, is a commercial version of the S language developed in the research
environment of AT&T Bell Laboratories. In fact, MathSoft DAPD would not exist if it not for our
ability to commercialize data analysis software. MathSoft has an established record of commer-
cializing advanced data analysis software developed partially using Government funds under the
SBIR program and the NASA EOCAP program. Partially supported by these awards, MathSoft
has commercialized and shipped six products: S+WAVELETS, S+DOX, S-Plus for ARC/INFO,
S+ARCVIEW GIS, S+SPATIALSTATS, S+GARCH, and S+SDK, and incorporated other capabil-
ities into the core S-Plus product. New methods developed here would be included in the core
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product.

5.3 Commercialization of fast bootstrap inference methods
The new inference methods would be deployed initially in S-Plus, and subsequently in Axum and
MathCad.

A key part of our strategy is to include new methods within common standard functions,
such as those to compute t-tests and linear regression, and to provide warnings when the new
methods indicate that the normal-based inferences may be inaccurate. The intent is to give the
new methods credibility, and to discredit normal-based inferences. While the inaccuracy of normal-
based methods is well known, they are commonly used in the absence of realistic alternatives. By
providing the side-by-side alternative, we hope to make software users reluctant to just use normal-
based inferences.

We plan to spread the news about the new capabilities through a combination of word of mouth,
journal articles initially aimed at the statistical research community and subsequently at the wider
population of practicing statisticians, presentations by MathSoft employees and consultants at
conferences, courses offered by MathSoft, marketing and sales efforts by MathSoft, other publicity—
e.g. press from a high-profile court case or FDA decision, if the results from inaccurate normal-based
methods and newer methods disagree, particularly if they fall on either side of the magic 5% level,
and outreach to the statistical education community. Hesterberg is a former teacher and maintains
close ties to leading statistical educators. These efforts should gradually increase demand and result
in new sales.

The new capabilities would also be added to some less-common but important functions, such
as those providing robust alternatives to the sample mean and least-squares regression, promoting
the use of these functions, and generating sales among people who wish to use these alternatives
but have not because of the lack of easy inferences. Some statistical educators are particularly
eager for this, which would expose students to S-Plus and increase future demand.

If the proposed research meets expectations, the new capabilities would be adequate justification
for new releases of S-Plus, Axum, and MathCad, with a major marketing push, worth millions of
dollars to MathSoft.

5.4 Commercialization of large sample methods

The market for statistical analysis for large data sets (“data mining”) is large and growing, esti-
mated at $8 billion per year and growing by 40% per year by META Group, an industry research
firm. S-Plus is currently a leading player in this market, offering attractive methods such as classifi-
cation and regression trees, clustering, factor analysis, Trellis graphics, linear, nonlinear and logistic
regression, and predictive models. The methods proposed here for making bootstrapping feasible
with larger data sets would allow allow analysts to not only obtain estimates, but obtain confi-
dence intervals to indicate how accurate those estimates are. This capability would let MathSoft
to increase its penetration in this market.
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