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Abstract

We develop multivariate extensions to two variance reduction techniques � nonlinear control variates

for estimating expected values� and concomitants of order statistics for estimating a distribution �including

expected values� probabilities� and percentiles�� We allow the relationship between Y and the X variables

to be nonlinear� and consider two cases � where the relationship is additive� and the general case� We

use additive regression models and univariate numerical integration to implement the additive case� and

numerical integration or Quasi�Monte Carlo methods as part of the implementation of Monte Carlo variance

reduction methods�
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�� Introduction

This article considers estimation of E�Y 	 and �the distribution function� FY in Monte Carlo simulation

when there exist one or more covariates with known distributions� The number of input variables in a

simulation may be very large� but we assume that Y can be well approximated by a function of a small

number d of covariates �which may be functions of the other input variables�� That is� we assume that

Y 
 S�X�� X�� � � � � Xd� � � �����

where �X�� X�� � � � � Xd� have a known joint distribution �or at least that an accurate approximation is

available� and � has variance which is small relative to the variance of Y � The X �s and � need not be

independent� A useful special case of ����� is the 
additive model� where

Y 
 s��X�� � s��X�� � � � �� sd�Xd� � �� �����

The S and�or s functions may be chosen prior to a Monte Carlo simulation� or may be estimated by a linear

or nonlinear regression on n observations from a Monte Carlo simulation�

We discuss control variate procedures for estimating E�Y 	 in Section �� and the method of concomitants

of order statistics for estimating FY in Section �� Quasi�Monte Carlo methods play a role in implementation

of both methods in higher�dimensional problems�

�� Control Variates

We progress in this section through increasingly general cases for the relationship between Y and the

X �s� beginning with the linear case� continuing with the additive case with s functions chosen prior to a

simulation� following with the additive case with s functions estimated from the data� and conclude with the

general S case�

Suppose that

Y 
 c� �

dX
j��

cjXj � � �����

where the Xj are random variables with known means� The classical control variates estimate for � �
 E�Y 	

is

��CV 
 c� �

dX
j��

cjE�Xj 	 � �� �����

The variance of the estimate is n��Var���� compared to the variance n��Var�Y � of the simple Monte Carlo

estimate Y � The optimal coe�cients are the regression coe�cients for Y against the X �s� which in practice

are estimated using linear least�squares regression �with asymptotically negligible e�ects on the mean square

error��

Consider next the additive model ����� in place of ������ If the s�s are chosen prior to the simulation� a

trivial extension of ����� yields �� 

Pd

j�� E�sj�Xj�	 � �� To implement this requires the calculation of the

expected values E�sj�Xj�	� which can be done analytically or using univariate numerical integration�

Lewis� Ressler� and Wood ������ considered the additive model with s�s estimated from the data using

the ACE algorithm of Breiman and Friedman ������� Unfortunately� they conclude �p� ���� that 
the

transformations ACE selects cannot be used to develop control variables for variance reduction since the
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transformations are non�parametric and the true means of the transformed variables cannot be determined��

We disagree� The true means can be calculated to any desired level of accuracy using numerical integration�

using the capability of ACE to produce values of the estimated s functions at any point �not just at the

observed values of the x�s�� which su�ces for most numerical integration methods� We propose the following

algorithm�

Algorithm�

Generate n Monte Carlo observations of Y and the X�s�

Fit Y 

Pd

j�� sj�Xj� � ��

Calculate E�sj�X�	 for j 
 �� � � � � d using numerical integration�

Let �� 

Pd

j�� E�sj�X�	 � tt�

The �t can be performed with ACE or other additive regression models� such as those in Hastie and Tibshirani

������

Turn now to the general� non�additive model ������ As in the additive case� the function S can be chosen

a�priori or estimated from the data� using a nonlinear regression procedure� The di�culty in the general

model is that E�S�X�� � � � � Xj�	 cannot be evaluated using univariate numerical integration� If d is relatively

small the deterministic integration procedures in Davis and Rabinowitz ������ may su�ce� If d is large

either Monte Carlo integration or Quasi�Monte Carlo integration �Niederreiter ����� ����� may be used�

It seems odd to use Monte Carlo simulation within a Monte Carlo simulation� But if a single observation

of S�X�� � � � � Xj� is less expensive to obtain than an observation of Y �because S is less expensive to compute

than is Y � or because Y depends on many more input variables than does S�� the optimal design would use

relatively few Monte Carlo observations to estimate E��	� and relatively many to estimate E�S	� particularly

since Var�S�� Var����

Similarly� the use of Quasi�Monte Carlo methods within a Monte Carlo simulation is justi�ed if S is

less expensive than Y to compute� The reduction in dimensionality �from many to d variables� is especially

helpful for Quasi�Monte Carlo methods�

�� Concomitants of Order Statistics

The concomitants of order statistics procedure is used to estimate the distribution FY of Y � We begin

with the case of one covariate �David ����� Efron ����� Do and Hall ������ and continue with two proposals

for the multivariate case� In this section it does not matter whether the relationship between Y and the X �s

is linear� additive� or general� so our notation assumes the general case�

In the univariate case we drop the subscript on X�� Let � be permutation of ��� � � � � n� such that

Xi 
 X��i�� �i is the rank of Xi� The concomitants of order statistics estimate of the distribution of Y is

�FY �y� 
 n��
nX
i��

I�Y �

i � y� �����

where

Y �

i 
 S�X�

i � � �i� �����

and

X�

i 
 F��
X �

�i � ��

n
�� �����
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This is the empirical distribution formed by replacing the randomX in ����� with a deterministic quantile X�

corresponding to the rank of X � Figures � and � show plots of Y vs� X and Y � vs� X�� when X � U��� ���

� � N��� ������ and Y 
 X� � �� for a set of ��� random observations� Note the perfectly even spacing in

the marginal distribution of X�� and that the distribution of Y � is more even than was that of Y �

We give the variance of the univariate concomitants procedure in the following theorem�

Theorem

Suppose that X and � have joint density h�x� ��� that Y 
 S�X� � �� that the marginal density of X

has convex support� and that Q�ajx� �
 P �� � ajX 
 x� is twice di�erentiable with respect to the second

argument� Then the asymptotic variance of the concomitants distribution function estimate ����� is

lim
n��

nVar� �FY �a�� 


Z
Q�a� S�x�jx��� �Q�a� S�x�jx��fX �x�dx

� �

ZZ
x��x�

Q���a� S�x��jx��Q���a� S�x��jx��FX �x����� FX�x���dx�dx� �����

where Q���ajx� 

d
dx
Q�ajx�� The proof is in the appendix�

The �rst term in ����� represents the expected value of the conditional variance of the Bernoulli variable

I�Y � a�� E�Var�I�Y � ajX��	� and is the inherent variability induced by �� The second term follows from a

hidden assumption in the procedure� that the conditional distribution of �i givenX 
 Xi is approximately the

same as the conditional distribution given X 
 F��
X ���i � ����n�� This assumption is met if the conditional

distribution of � given X changes only slowly with respect to X and if Xi � X�

i � The theorem indicates that

the estimate has a �nite asymptotic variance as long as there are no intervals with zero probability within in

the support of X � However� the variance may be large if the conditional distribution of � given X depends

strongly on X � Figure � demonstrates what happens with a bad choice of S� in this case S�x� 
 sin���x��

the conditional mean E��jx	 oscillates� and when the residuals Y � S�X� are added to the curve at new

x�values X� the result no longer approximates the true curve�

��� Multivariate Concomitants

In the multivariate case we consider two alternatives� replacing X with X� independently for each

variable� or a joint replacement�

Let X be the matrix with elements Xi�j � where Xi�j is the i�th observation of the j�th covariate� For

independent concomitants we let

Y �

i 
 S�X�

i��� X
�

i��� � � � � X
�

i�d� � �i �����

replace Yi in the empirical distribution function� where the X�

i�j are computed separately for each dimension

d� as in ������ Figures � shows a scatterplot of unadjusted X� vs� X�� and Figure � a plot of adjusted X�

�

vs� X�

� � for ��� random observations� The marginal distributions of X�

� and X�

� are perfectly spaced� but

the joint distribution is still irregular�

We make the joint distribution regular by replacing the d�dimensional covariate observations with

regularly�spaced pointsX��

i�� � as shown in Figure �� We begin by lettingUi�� be a set of n points generated by a

Quasi�Monte Carlo procedure to be approximately uniformly distributed on the unit d�dimensional cube� In

Figure � the points are based on a slightly modi�ed version of the Hammersley sequence �Niederreiter ������

Our �rst dimension is de�ned by Ui�� 
 �i� �����n �we subtract ��� to avoid observations on the boundary
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of the cube�� Subsequent dimensions are de�ned by Ui�j 
 �pj �i�� where pj is the �j � ���st prime number

and � is the radical inverse function de�ned by �p�i� 

P

k akp
�k�� where i 


P
k akp

k� These points are

formed by reversing the base pj representation of i� for example� U��� 
 ����� ����� ����� ������ ������ � � �� in

base � notation� or ����� ���� ���� ���� ���� � � ���

Now� let

X��

i�� 
 G�U��i�����

where � is some permutation and G � Rd �� Rd is a transformation such that the vector�valued random

variable G�U�� � � � � Ud� has the same distribution as �X�� � � � � Xd� when U�� � � � � Ud � U��� ���

In choosing the permutation �� we note that �as in the one�dimensional case� it is important that

Xi�� � G�U��i����� so that the distribution of � given Xi�� is approximately the same as given X
��

i�� � We choose

� so that sum of distances
nX
i��

jXi�� �G�U��i����j

is as small as can be achieved with reasonable computational e�ciency� The global minimum could be

achieved using the Hungarian Matching Algorithm �Nering and Tucker ����� from the n � n matrix of

pairwise distances� but that algorithm requires between O�n�� and O�n�� operations�

We suggest instead a recursive O�n log�n�� method� Partition both sets of d�dimensional points into two

equal groups based on the �rst dimension� so that the �rst n�� observations have the smallest n�� values of

X�� For both sets� partition each group on the second dimension �so the �rst n�� values of X� are smaller

than the second n�� values�� Continue partitioning on successive dimensions �return the the �rst dimension

after the d�th dimension until the subgroups are reduced to size �� For example� if �one set of� the unordered

points are given by

�X� 
 ��� �� �� �� �� �� �� ��� X� 
 ��� �� �� �� �� �� �� ��	� the successive orderings are�

�X� 
 ��� �� �� �� �� �� �� ��� X� 
 ��� �� �� �� �� �� �� ��	 �after partitioning on X���

�X� 
 ��� �� �� �� �� �� �� ��� X� 
 ��� �� �� �� �� �� �� ��	� �after partitioning on X���

�X� 
 ��� �� �� �� �� �� �� ��� X� 
 ��� �� �� �� �� �� �� ��	� �after the �nal partition on X���

After both sets have been reordered the corresponding observations are matched� The result in shown in

Figure �� with line segments from the original data to the Quasi�Monte Carlo points� with �lled circles at

the latter� The matching is not optimal� but is reasonably good�

Note that the upper right and left corners of the scatterplot are devoid of �Monte Carlo� observations in

Figure �� In Figure � we observe that the nearest Monte Carlo points are matched with Quasi�Monte Carlo

points in those corners� like tadpoles swimming to �ll the corners�

For estimating a single probability FY �y� for y �xed� this concomitants algorithm for joint distributions

should be used only for moderately�sized data sets� Asymptotically� the computational cost for n observations

is O�n log n� for an error variance of O�n���� whereas simple Monte Carlo estimation has cost O�n� for error

variance of O�n���� the advantage of the concomitants algorithm for moderately�sized data sets is that the

constant term in the variance is smaller�

For estimating the complete distribution or quantiles of Y � the computational cost for simple Monte

Carlo is also O�n log n� �from sorting the Y �s�� so the concomitants algorithm is also asymptotically com�

petitive�
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Appendix� Proof of Theorem �����

By conditioning on X 
 �X�� � � � � Xn�� we decompose the variance of �F into two terms

Var� �F � 
 E�Var� �F jX�	 � Var�E� �F jX	�� �A���

We will show that these two terms correspond to the single and double integrals in ������ respectively�

Let �i 
 F��
X ��i� ����n�� X�i� be the i�th order statistic of the X �s� and ��i� be the corresponding value

of �� The conditional distribution of ��i� given X�i� 
 x is given by Q��jx�� and depends only on X�i�� We

rewrite ����� as

�FY �a� 
 n��
nX
i��

I�S��i� � ��i� � a� 
 n��
nX
i��

Ii

where I is the logical indicator function and Ii 
 I�S��i� � ��i� � a��

Turn now to the �rst term of �A���� We manipulate the inside of the �rst term to obtain

Var� �FY �a�jX� 
 n��Var�

nX
i��

IijX�


 n��
nX
i��

Var�IijX�i��


 n��
nX
i��

�Q�a� S��i�jX�i��


 n��
nX
i��

�Q�a� S��i�j�i� � �Q���a� S��i�j�i��X�i� � �i� �O��X�i� � �i�
��

where �Q 
 Q���Q� and �Q���ajx� 

d
dx

�Q�ajx�� Without loss of generality� we assume that X has bounded

support �let x� 
 t�x� where t is an increasing twice�di�erentiable bounded transformation� and let S���� 


S�t������� then replace S and X in the theorem with S� and X ��� so that E�X�i�	 
 �i�o��� and �X�i���i�
� 


OP �n
��� uniformly in i� Then

nE�Var� �F jX�	 
 n��
nX
i��

�Q�a� S��i�j�i� � o���

�

Z
�Q�a� S�x�jx�fX �x�dx�

Turn now to the second term of �A����

nVar�E� �F jX	� 
 n��Var�

nX
i��

Q�a� S��i�jX�i���


 n��Var�

nX
i��

Q�a� S��i�j�i� �Q���a� S��i�j�i��X�i� � �i� �OP �n
����


 �n��
X
i�j

Q���a� S��i�j�i�Q���a� S��j�j�j�Cov�X�i�� X�j�� �OP �n
���


 �n��
X
i�j

Q���a� S��i�j�i�Q���a� S��j�j�j�
FX��i���� FX ��j��

fX��i�fX��j�
�OP �n

���

� �

ZZ
x��x�

Q���a� S�x��jx��Q���a� S�x��jx��FX �x����� FX �x���dx�dx��

�



Thus the two terms match� and the proof is complete� Similar calculations show that the bias of �����

is of order O���n�� Do and Hall ������ give another formula for the variance� which they prove using a

di�erent method�
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Figure 1:  Simple Monte Carlo
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Figure 2:  One-Dimensional Concomitants
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Figure 3:  Bad Choice of Function S

Marginal distributions are at the right and bottom of each plot.
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Figure 4:  Random Covariates
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Figure 5:  Independent Concomitants

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

U1 (or X**1 )

U
2
 (

or
 X

** 2
)

Figure 6:  Quasi-Monte Carlo Points
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Figure 7:  Matching Q-MC points to Data

Marginal distributions are at the right and bottom of each plot.


