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Abstract

Least-Angle Regression and the LASSO (`1-penalized regression) offer a number of advan-
tages over procedures such as stepwise or ridge regression in variable selection applications,
including prediction accuracy, stability and interpretability. We discuss formulations of these
algorithms that extend to datasets in which the number of observations could be so large that it
would not be possible to access the predictors as a unit in computations. Our methods require
a single pass through the data for orthogonal transformation, effectively reducing the dimension
of the computations required to obtain the regression coefficients and residual sums-of-squares.

Keywords: regression, regularization, `1 penalty, lasso, scalable, massive datasets, tall datasets.

1 Introduction

This paper addresses the problem of least-angle regression (Efron et al. 2004) and its extension to
the LASSO method (Tibshirani 1996) for linear models with very large numbers of observations.
We write the model as:

y =
(

1 X
)( β

b

)
+ ε, (1.1)

where y is a numeric response, 1 a column of ones, X an n× p numeric matrix of predictors, β an
intercept, b a vector of p additional regression coefficients, and ε a vector of residuals. We assume
that:

- the number of observations n may be so large that X (and possibly y) could not be stored in
memory.

- the number of predictors p is sufficiently small that matrices with dimensions of order p could
be held in memory and used in computations.

- X and y are stored in such a way that the rows of X can be accessed in a sequential blockwise
fashion, and the corresponding components of the response y can be accessed with each block
of rows of X.

Least-angle regression and LASSO were originally described in terms of X and y, and an imple-
mentation suitable for datasets of moderate size has been made available (Efron and Hastie 2003).

The main idea in this paper is to do all of the necessary calculations in memory using an
orthogonal transformation of the matrix of predictors and the response that reduces the dimension
of the computations. The necessary transformations can be accumulated in a single pass through
the data, which need not reside in memory, but is assumed blockwise accessible. The process is a
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memory-efficient version of the QR decomposition that is used for linear regression. Here we show
how it can also be applied to least-angle regression and its LASSO extension.

The paper is organized as follows. The basic LARS algorithm is described in Section 2. We
show in Section 3 how to express all of the necessary computations without accessing X or y after
initial factorization and transformation to matrices and vectors with dimensions of order p. In
Section 4 we show how to obtain this factorization and transformation using sequential blockwise
access to rows of X along with simultaneous access to corresponding entries of the response y.
The results of Section 3 and Section 4 allow extension of LARS to very large blockwise-accessible
datasets. Section 5 summarizes the results and provides further discussion. Derivations of some of
the relations used in the algorithms are given in the appendix, as well as information on a scalable
S-PLUS implementation.

2 Algorithm Description

Efron et al. (2003, 2004) develop least angle regression as a variable-selection technique for linear
models. There are three basic variants: least-angle regression (LAR), `1 penalty (LASSO), and
forward stagewise, which are collectively referred to as LARS. Although the methods described
here can be applied to all of these algorithms, we discuss only LAR and LASSO since the forward
stagewise variant can require many steps and is not widely used.

In Efron et al. (2003, 2004), the predictors and response are transformed to have mean 0. This
effectively assumes an intercept in the model, as shown in the appendix. Efron et al. (2004) also
assume that the predictors have unit Euclidean length, but we do not make this assumption here.
We write the model as

ỹ = X̃b+ ε, (2.2)

where ỹ denotes the response with its mean subtracted, and X̃ denotes the matrix of predictors
X, each with its mean subtracted. Later we show how to implement the methods in reduced
dimensions, without first centering or scaling the variables.

The methods proceed iteratively in a series of steps. We make the following definitions:

- bk: the vector of coefficients at (the end of) step k,

- Ak: the active set of predictors during step k,

- pk: the number of active predictors,

- X̃k: the columns of X̃ corresponding to Ak,

- Pk: a pk × p matrix of zeroes and ones such that X̃k = X̃P T
k ,

- rk ≡ ỹ − X̃bk: the vector of partial residuals at step k.

Initially all coefficients b0 are zero, and A0 is empty. A series of models is fitted in which predictors
are successively added to or dropped from the active set, and coefficients are updated. The final
model has a maximal set of linearly-independent predictors.

At the kth step, the active set is updated, and a new set of coefficients bk are obtained by
determining a step length λk along a direction dk from bk−1:

bk ← bk−1 + λkdk, (2.3)

with 0 ≤ λk ≤ 1. The active set and step length calculations differ for LAR and LASSO, and we
compare these below.

2

Technical Report, Insightful Corp.



The direction dk comes from the least-squares estimate based on the active set. Let

zk = argmin
z
‖y − X̃kz‖ (2.4)

be the least-squares coefficients based on the current active set. Equivalently, zk satisfies the normal
equations

X̃T
k X̃kzk = X̃T

k y. (2.5)

The direction dk is the vector of length p which is equal to zk−Pkbk−1 in the entries corresponding
to the active predictors, and 0 elsewhere:

dk = P T
k (zk − Pkbk−1).

The step length λk to be taken from bk−1 along dk to get the new set of coefficients is determined
by the algorithm (LAR or LASSO), based on the correlations of the predictors with the partial
residuals:

cor(X̃, rk) ≡ D
−1
X X̃T rk
‖rk‖2

,

where
DX ≡ diag

(
‖X̃∗1‖2, ‖X̃∗2‖2, . . . , ‖X̃∗p‖2

)
.

The correlations are proportional to the inner products between the partial residuals and predictors,
standardized by their norms. Dropping the denominator for simplicity, we work with

ck = D−1
X X̃T rk (2.6)

and with the more general
c(b) = D−1

X X̃T (ỹ − X̃b).

At the start of a step, the active set is defined to be the predictors corresponding to the corre-
lations that have the largest magnitude. These correlations would vanish if a unit step were taken
in the direction dk. The first predictors to enter the active set are those with the largest absolute
correlations with ỹ. Subsequently, the differences in step length and active variable selection for
the different LAR and LASSO are:

• Least-Angle Regression

The step length λk in LAR is the smallest step such that one or more predictors that are
not in the current active set Ak have correlation equal in magnitude to the correlations of
members of Ak at bk−1 +λdk. Those predictor(s) are added to the active set for the following
step. The required computations are straightforward because

c(bk−1 + λdk) = D−1
X X̃T

[
ỹ − X̃(bk−1 + λdk)

]
(2.7)

is a linear function of λ. In LAR, predictors never leave the active set once they are added.

• LASSO and `1 Penalty Regression

A LASSO (Tibshirani 1996) solution minimizes

min
b
‖ỹ − X̃kb‖22 + θk‖D−1

X b‖1
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for some θk > 0. Coefficients are scaled in the `1 penalty term for consistency with Tibshirani
(1996) and Efron et al. (2004), where columns of X̃ are normalized.

At a LASSO solution, correlations corresponding to non-zero components of bk are maximal in
magnitude and have sign equal to the corresponding element of bk (e.g. Osborne et al. 2000).
In the LASSO modification of least-angle regression, the step length λk is the smallest step
such that either bk−1 +λdk changes sign for one or more of the predictors in the current active
set, or the LAR step criterion holds (Efron et al. 2004). In either case, bk = bk−1 + λkdk

satisfies the LASSO optimality conditions. When the LASSO step is determined by a sign
change, the predictors at which the coefficients change sign are zero and are dropped from
the active set at the next iteration (no new predictors are added).

3 Alternative Implementation in Reduced Dimensions

In this section, we show how to implement LAR and LASSO in reduced the dimensions using
a Cholesky factor of X̃T X̃ and the corresponding transformation of ỹ. Later, in Section 4, we
describe the one-pass blockwise transformation of

(
1 X

)
and y to the forms needed for the

methods described here.

3.1 Cholesky and QR Factorizations

A p× p upper triangular matrix R̃ satisfying

R̃T R̃ = X̃T X̃,

is called a Cholesky factor 1of X̃. The Cholesky factor R̃ can be obtained by applying a series of
orthogonal Householder transformations to X̃. There is an associated QR factorization of X̃ in
which

X̃ = Q̃R̃,

where Q̃ is an n × p matrix with orthogonal columns. In ordinary least squares, the coefficients b
for the regression

ỹ ∼ X̃

satisfy the normal equations
X̃T X̃b = X̃T ỹ,

or equivalently
R̃b = Q̃T ỹ.

The latter has advantages for numerical accuracy, and also for efficiency in applications like LAR
and LASSO. It is not necessary to form the matrix Q̃, since the product Q̃T y can be accumulated
by sequential application of the transformations used to form R̃. For extensive discussion of the QR
factorization and its use in regression computations, see Chapter 5 of Golub and Van Loan (1996).
In Section 4, we show how to obtain the Cholesky factor via blockwise application of Householder
transformations.

1The Cholesky factor is unique up to the signs of the rows.
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3.2 Directions and Correlations

Let R̃ be an upper triangular Cholesky factor of X̃, and let

y̌ ≡ Q̃T ỹ

be the transformation of ỹ obtained by forming R̃ from X̃ via sequential orthogonal transformations.
To obtain LAR/LASSO directions, we need the solution zk to the normal equations (2.5) for the
current active set:

X̃T
k X̃kzk = X̃T

k y. (3.8)

If R̃k is the Cholesky factorization of X̃k, and y̌k is the corresponding transformation of y, then
(3.8) is equivalent to

R̃kzk = y̌k. (3.9)

Use of (3.9) has numerical advantages over (3.8), since growth in roundoff error is bounded by
the square root of the condition number of X̃T

k X̃k rather than the condition number.2 The scaled
correlations (2.6) are given by

ck = D−1
X X̃T rk = D−1

X X̃T (ỹ − X̃bk) = D−1
X R̃T

(
y̌ − R̃[bk−1 + λkdk]

)
. (3.10)

Step lengths for LAR and LASSO are computed in reduced dimensions from (3.10) instead of (2.7).
Because X̃ and R̃ are related through orthogonal transformation of columns,

‖R̃∗j‖2 = ‖X̃∗j‖2, j = 1, . . . , p,

where R̃∗j and X̃∗j , represent the jth column of R̃ and X̃, respectively, so that

DX = diag
(
‖R̃∗1‖2, ‖R̃∗2‖2, . . . , ‖R̃∗p‖2

)
.

Our methods compute R̃ in one pass through the data, which also gives us an efficient way to
compute DX (which is needed for scaling the correlations) at the outset.3

3.3 Cholesky Factor and Transformed Response for Reduced Sets of Predictors

The Cholesky R̃k of the reduced set of predictors X̃k can be obtained from the Cholesky factor R̃ of
the full set of predictors X̃ via orthogonal Householder transformations as illustrated in Figure 1.
These Householder transformations must also be applied to the vector y̌ to obtain the vector y̌k

needed in to compute the direction. Although it is not necessary, we assume that the columns of
X̃k appear in the same order as they would in X̃, and that the reduced Cholesky factor is formed
from the original accumulated Cholesky factor, rather than the Cholesky factor used in the (k−1)st
step. However, if at stage k, the active set consists only of leading columns of X̃ or of X̃k−1, then
no update is necessary since R̃k and y̌k would consist of the corresponding leading columns of R̃ or
R̃k−1 and the corresponding leading elements of y̌ or y̌k−1, respectively.

2The condition number of a positive semi-definite matrix is its largest eigenvalue divided by its smallest eigenvalue.
This ratio goes to infinity as the matrix nears singularity.

3Alternatively, R can be scaled initially by its column norms and the coefficients correspondingly transformed
after the procedure is completed.
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× × × × ×
0 × × × ×
0 0 × × ×
0 0 0 × ×
0 0 0 0 ×

remove
predictors
2 and 4→

× × ×
0 × ×
0 × ×
0 0 ×
0 0 ×

Householder→

× × ×
0 ⊗ ⊗
0 0 ⊗
0 0 ×
0 0 ×

Householder→

× × ×
0 × ×
0 0 ⊗
0 0 0
0 0 0

Figure 1: Restoration of triangular form via Householder transformations after removal of some predictors.
predictors are kept in their original order.

3.4 Detecting Linear Dependence

The approach to linear models and LAR/LASSO via orthogonal factorization has an advantage
over the normal equations in terms of detection of ill-conditioning and linear dependence in predic-
tors, which is typically revealed by small diagonal elements in the resulting upper-triangular factor.
When redundant predictors are detected, they can be eliminated using the updating process de-
scribed in Section 3.3. In the case of LASSO, there should be the option to attempt to reintroduce
predictors that are dropped due to ill-conditioning if one or more of the leading predictors present
when the ill-conditioning was detected has been dropped from the active set.

3.5 Residual Sum of Squares

Values of the residual sum of squares
∥∥∥∥y − ( 1 X

)(βk

bk

)∥∥∥∥2

2

are needed for regression diagnostics,

such as the Cp statistic proposed in Efron et al. (2004) for variable section. If we have the upper-
triangular matrix R from a QR factorization of

(
1 X

)
:(

1 X
)

= QR,

and the accumulated transformed response QT y, the residual sum of squares can be expressed in
terms of R and QT y as follows:∥∥∥∥y − ( 1 X

)(βk

bk

)∥∥∥∥2

2

=
∥∥∥∥QT y −R

(
βk

bk

)∥∥∥∥2

2

,

with no need to access X or y, or to explicitly form Q.

3.6 Obtaining R and R̃

In the appendix, we show that if R is a Cholesky factor of
(

1 X
)
, then a Cholesky factor of X̃

(the matrix R̃ of Section 3) is available as a submatrix of R. We also show that the transformed
response y̌ = Q̃T ỹ of Section 3 is a subvector if QT y. Hence orthogonal factorization of

(
1 X

)
and simultaneous transformation of y suffices both for computing LAR/LASSO coefficients and for
computation of the associated residual sums of squares.

4 Blockwise Cholesky Factorization

The first step in LAR/LASSO for large data sets is to form the upper triangular Cholesky factor R

of
(

1 X
)T (

1 X
)

in one row-wise pass through the data X. As mentioned in Section 3.6, we
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× × ×
0 × ×
0 0 ×
× × ×
...

...
...

× × ×

Householder→

⊗ ⊗ ⊗
0 × ×
0 0 ×
0 ⊗ ⊗
...

...
...

0 ⊗ ⊗

Householder→

× × ×
0 ⊗ ⊗
0 0 ×
0 0 ⊗
...

...
...

0 0 ⊗

Householder→

× × ×
0 × ×
0 0 ⊗
0 0 0
...

...
...

0 0 0

Figure 2: An illustration of the changes in sparsity structure in applying successive Householder transfor-
mations in updating the current upper triangular factor (above line) from a new block of rows of predictors
(below line). Each arrow corresponds to application of a Householder transformation, × represents a po-
tentially nonzero entry, and ⊗ represents an entry that would typically change value after the Householder
transformation is applied. In general, k Householder transformations are needed to process a block with k
columns.

show in the appendix that it suffices to form the Cholesky factorization of
(

1 X
)

via orthogonal

transformation and the corresponding transformation of y to obtain the triangular factor R̃ and the
transformed response y̌ of Section 3. Only a limited number of rows of X will be available at a time,
so we accumulate R by applying a succession of orthogonal Householder transformations using the
factorization accumulated so far and the currently available rows of X. The corresponding entries
of the response y must be available as the rows of X are processed in order to accumulate y̌, the
transformation of y needed for the LAR and LASSO procedures.

Formation of a triangular Cholesky factor for a crossproduct matrix via blockwise orthogonal
transformation is a straightforward extension of in-memory techniques used for the QR factor-
ization (e.g. Chapter 5 of Golub and Van Loan 1996). Details useful from the point of view of
implementation are not widely available, so we include a description here. We assume the data
X | y is read in blocks. The procedure as applied to a block of data is illustrated in Figure 2.

The accumulated upper-triangular matrix R is held separately in memory from the blocks of
X as they are accessed. The computations involved in formation and application of each House-
holder transformation can be arranged to exploit this. The effect of an individual Householder
transformation can be viewed as follows:(

rT
j

Bj

)
=

(
ρj sT

j

bj Bj

)
Householder→

(
ρ̃j s̃T

j

0 Bj+1

)
j = 1, . . . , p+ 1,

where rj is the nonzero portion of a row of the accumulated R, and Bj consists of the corresponding
columns of the current block of data. Both rj and Bj are modified with each application of a
Householder transformation.
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The details of applying a Householder transformation in this context are as follows:(
I − 2

hT
j hj

hjh
T
j

)(
rT
j

Bj

)
=

(
I − 2uju

T
j

)( rT
j

Bj

)
(uj is the unit vector in the direction of hj)

=

(
rT
j

Bj

)
− 2

(
ωj

wj

)(
ωj wT

j

)( rT
j

Bj

)

=

(
rT
j

Bj

)
− 2

 ωj

[
ωjr

T
j + wT

j Bj

]
wj

[
ωrT

j + wT
j Bj

]
 ,

which gives the following algorithm for computation:

1. Let hj be a Householder transformation that maps the first column of

(
rT
j

Bj

)
to a vector

whose first element is its only nonzero element:

hj ←

 ρj + sign(ρj)
∥∥∥∥( ρj

bj

)∥∥∥∥
2

bj

 .

2.

(
ωj

wj

)
← hj

‖hj‖2

3. vj ← 2
(
ωjrj + BT

j wj

)
4. rT

j ← rT
j − ωjv

T
j

5.
(

0 Bj+1

)
← Bj − wjv

T
j (first column vanishes)

Since an intercept is included in the regression, the first Householder transformation in each block
involves the intercept, which is not explicitly stored. In this case,

h1 ←
(
ρ1 + sign(ρ1) ‖1nB‖2

1nB

)
=
(
ρ1 + sign(ρ1)

√
nB

1nB

)
,

where nB is the number of rows in the block.

5 Summary and Discussion

A Google Scholar search in September 2007 shows over 300 citations of Efron et al. (2004), and
nearly 700 citations of Tibshirani (1996). These deal with issues such as categorical and grouped
variables, extension to nonlinear models, and cases in which there are many more predictors than
observations, but not with datasets with very large numbers of observations.

Our approach is a scalable extension to least-angle regression and the LASSO method. For-
mation of a triangular Cholesky factor for a crossproduct matrix via blockwise orthogonal trans-
formation is a straightforward extension of in-memory techniques used for the QR factorization
(e.g. Chapter 5 of Golub and Van Loan 1996); our contribution is its adaption and application
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to least-angle regression and LASSO. Although our methods do not apply to adaptive linear and
nonlinear models because iterative evaluation of functions of the predictors would be required, our
approach allows considerable flexibility, since it applies to any model of the form

y ∼ ( 1 φ1(X) . . . φm(X) ) ,

where φ1, . . . φm are (possibly nonlinear) functions of the predictors, m is of order p, and the
functions are fixed in advance. Such functions could include higher-order terms and interactions
between predictors, for example.

Fan et al. (2007) and Fan and Cheng (2007) also propose a blockwise approach to regression
and variable selection for massive datasets, but they apply their methods to each block separately.
Their approach requires synthesis of the blockwise results, and more than one pass is needed to
determine an appropriate blocksize. In our proposed methodology, the results are independent
(except for roundoff error) of the order of the observations as well as of the block size, which is
limited only by the size of memory.

For information on an available S-PLUS implementation of our methods that uses the bigdata
library to handle massive datasets by blockwise processing and on ongoing work on software for
generalized least-angle regression, see

http:www.insightful.com/Hesterberg/glars
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A Derivations

In this section, we derive some of the relations on which we have based our scalable version of
least-angle regression and LASSO.

Let X be an n× p matrix, and y and n-vector. Consider the following regression problems:

y ∼
(

1 X
)

(A.11)

and
ỹ ∼ X̃, (A.12)

where 1 is the vector of length n in which all components are equal to 1, and ỹ represents y with
its mean subtracted out

ỹ ≡ y − ȳ1,

and X̃ represents X with column means subtracted out, that is,

X̃ ≡ X − 11T

n
X =

(
I − 11T

n

)
X.

It is easy to see that if b =

(
β
b

)
are ordinary least-squares regression coefficients for (A.11), then

b are ordinary least-squares regression coefficients for (A.12), and

β =
1T (y −Xb)

n
= ȳ − ( X̄∗1 X̄∗2 . . . X̄∗p )T b, (A.13)

where X̄∗j is the mean of the jth column of X.
Suppose that we have a QR factorization of

(
1 X

)
:

(
1 X

)
= QR = Q

(
R
O

)
, (A.14)

where Q is an n× n matrix with orthogonal columns, and R is an n× p matrix, and R is a p× p
upper triangular matrix. Then, if

Q = (Q Z ) ,

where Q is n× p, an alternative QR factorization is(
1 X

)
= QR. (A.15)

Let R have the following partition

R =

(
ρ sT

0 U

)
. (A.16)

In Proposition 1, we derive the relationship between Cholesky factors of
(

1 X
)

and X̃. In
Proposition 2, we derive a relationship between the transformations of y corresponding to a QR
factorization of

(
1 X

)
and the transformation of ỹ corresponding to a QR factorization of X̃.

In Proposition 3, we derive an expression for the regression coefficient of the intercept in (A.11)
in terms of the QR factorization of

(
1 X

)
and the corresponding transformation of y.

10

Technical Report, Insightful Corp.



Proposition 1: Suppose that R is an upper triangular Cholesky factor
(

1 X
)T (

1 X
)
:

RTR =
(

1 X
)T (

1 X
)
,

R p× p upper triangular. Let R be partitioned as in (A.16). Then the upper triangular matrix U
in (A.16) is a Cholesky factor of X̃.

Proof.

RTR =

(
ρ sT

0 U

)T (
ρ sT

0 U

)
=

(
ρ2 ρsT

ρs UTU + ssT

)
, (A.17)

and (
1 X

)T (
1 X

)
=
(

1T

XT

)
( 1 X ) =

(
1T1 1TX
XT1 XTX

)
=
(

n 1TX
XT1 XTX

)
.

Since RTR =
(

1 X
)T (

1 X
)
,

ρ2 = n

XT 1 = ρs

XTX = UTU + ssT ,

(A.18)

from which it follows that

UTU = XTX − ssT = XTX − XT 11TX

ρ2
= XTX − XT 11TX

n

= XT

(
I − 11T

n

)
X = XT

(
I − 11T

n

)(
I − 11T

n

)
X = X̃T X̃,

so that U is a Cholesky factor of X̃.

Proposition 2: Let y be any n vector, and consider the QR factorization (A.15). Let R be
partitioned as in (A.16). and partition QT y as

QT y =
(
ζ
z

)
,

where ζ is a scalar. Then z differs from the transformation y̌ = Q̃T ỹ of ỹ would result in forming
U from a QR factorization Q̃U of X̃ only in the null space of UT . Moreover, if U is nonsingular
(or, equivalently, the columns of X̃ are linearly independent), z = y̌.
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Proof. Let b =

(
β
b

)
be ordinary least-squares regression coefficients for (A.11). Then,

(
1 X

)T (
1 X

)
b =

(
n 1TX

XT1 XTX

)(
β
b

)
=
(

nβ + 1TXb
βXT1 +XTXb

)
=
(

1 X
)T

y

= RTQT y =

(
ρ sT

0 U

)T (
ζ
z

)
=
(

ρζ
ζw + UT z

)
.

Using relations from (A.18), this can be rewritten as

(
nβ + 1TXb

βXT1 +XTXb

)
=


nβ + 1TXb

βXT1 +

[
UTU +

XT11TX

n

]
b

 =


√
nζ

ζ
XT1√
n

+ UT z

 . (A.19)

So that

ζ =
nβ + 1TXb√

n
,

and

ζ
XT1√
n

=

[
nβ + 1TXb√

n

]
XT1√
n

= βXT1+
(1TXb)(XT1)

n
= βXT1+

(XT1)(1TXb)
n

= βXT1+
XT11TX

n
b.

Combining with (A.19), this gives
UTUb = UT z.

Now U is a Cholesky factor of X̃ from Proposition 2 and b is an ordinary least-squares solution
of (A.12), so

UTUb = X̃T ỹ = UT Q̃T ỹ = UT y̌,

by the discussion in Section 3.1. Hence

UT z = UT y̌ or UT (z − y̌) = 0,

so that z and y̌ differ only in the null space of UT . Moreover, if U is nonsingular,

z = U−TUT z = U−TUT y̌ = y̌.

Proposition 3: Let b =

(
β
b

)
be ordinary least-squares regression coefficients for (A.11). Let

R in the QR factorization (A.14) be partitioned as in (A.16), and let QT y be partitioned as

QT y =
(
QT y
ZT y

)
=

 ζ
z

ZT y

 ,
where ζ is a scalar. Then

β =
ρ(ζ − sT b)

n
.
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Proof. From (A.14), we have

QT
(

1 X
)

=
(
QT1 QTX

)( R
O

)
.

From the partition (A.16), we have

QT1 =

 ρ
0
0

 and QTX =

 sT

U
O

 .
Combining these results with (A.13), we have

β =
1T (y −Xb)

n
=

1TQQT (y −Xb)
n

=
1
n

 ρ
0
0


T 
 ζ

z
ZT y

−
 sT

U
O

 b
 =

ρ(ζ − sT b)
n

.
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