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Linear Approximations for Functional Statistics in Large-Sample
Applications

T. C. Hesterberg and S. J. Ellis

Abstract

We discuss methods for obtaining linear approximations to a functional statistic, with par-
ticular application to bootstrapping medium to large datasets. Existing methods use analyt-
ical approximations, finite-difference derivatives, or linear regression using bootstrap results.
Finite-difference methods require an additional n evaluations of a functional statistic (where
n is the number of observations in the data set), and regression methods require that that
the number of bootstrap samples B is substantially larger than n. We develop regression-
type methods that allow B to be much smaller, and that require no dedicated bootstrap
samples. The method uses a prespecified or adaptively chosen design matrix.

Key Words: Bootstrap tilting, concomitants of order statistics, importance sampling, jack-
knife, stratified sampling, variance reduction.

1 Introduction

We begin with a short introduction to the bootstrap, then discuss new methods in subsequent
sections; for a more complete introduction to the bootstrap see Efron and Tibshirani (1993).
The original data are X = (X1, X5, ..., X,,), a sample from an unknown distribution (which
may be multivariate). Let § = (F) be a real-valued functional parameter of the distribution,
such as its mean, interquartile range, or slope of a regression line, and 6 = Q(ﬁ’) the value
estimated from the data. The sampling distribution of 0

G(a) = Pr(f < a) (1)

is used for statistical inference.

In simple problems the sampling distribution can be approximated using methods such
as the central limit theorem and the substitution of sample moments such as 7 and s into
formulas obtained by probability theory. This may not be sufficiently accurate or even
possible in many real, complex situations.

The bootstrap principle is to estimate some aspect of G, such as its standard deviation,
by replacing F' with an estimate F. We focus on the nonparametric bootstrap, for which
F'is the empirical distribution. Let X* = (X7, X5,...,X}) be a a bootstrap sample of size
n from F , denote the corresponding empirical distribution F *, and write 0 = G(F *). In
simple problems the bootstrap distribution PF(é* < a) can be calculated or approximated
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analytically, but it is usually approximated by Monte Carlo simulation—for some number
B of bootstrap samples, sample X} for b =1, ..., B with replacement from X', then let

Ga) = B Y 1(6; < a). 2)

b=1

The focus of this report is on computationally-efficient methods for obtaining (gener-
alized) linear approximations for functional statistics. Such approximations are used for
a number of applications — standard errors, the acceleration constant for the bootstrap
BC-a interval (Efron (1987)), importance sampling in bootstrap applications (Johns (1988);
Davison and Hinkley (1988)), concomitants of order statistics for bootstrap variance reduc-
tion (Efron (1990); Do and Hall (1992)), control variates and post-stratification (Hesterberg
(1995); Hesterberg (1996)), bootstrap tilting inferences (Efron (1981); DiCiccio and Romano
(1990); Hesterberg (1997); Hesterberg (1998)), and bootstrap tilting diagnostics (Hesterberg
(1997); Hesterberg (1998)).

A “generalized linear approximation” to 0* is determined by a vector L of length n, with
elements L; corresponding to each of the original observations z;, such that

VX)) =1 = Y 1P ®)

for some smooth monotone increasing function ¢, where P; = M;/n and M; is the number
of times x; is included in X*. The special case where (7*) = T* — T'(X) is a standard
linear approximation.

For example, Figure 1 shows a generalized linear approximation for bootstrapping the
sample standard deviation (n~' ¥ (2f—7*)?)'/2. (The divisor is n rather than n—1 so that the
statistic is functional.) The curvature could be removed in this case by the transformation
V(0) = 0%

In Section 2 we discuss “knife” methods — the jackknife and related methods — for
obtaining linear approximations. In Section 3 we discuss regression methods, including the
new “design-based” regression method in Section 3.1.

2 Knife Methods

In this section we review a number of methods based on functional derivatives.

We restrict consideration to distributions with support on the observed data. Then we
may describe a distribution in terms of the probabilities p = (p1,...p,) assigned to the
original observations; F' corresponds to py = (1/n,...,1/n). Let 8(p) be the corresponding
parameter estimate (which depends implicitly on X).



Generalized linear approximation
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Figure 1: Generalized Linear Approximation for bootstrapping the sample standard devia-
tion. The data are a random sample of size n = 40 from a standard normal distribution,
B = 1000, and the linear approximation is obtained by the infinitesimal jackknife (empirical
influence function).



The “knife” approximations in this section are of the form

0(Po + €(0; — P.)) — 0(Po)

€

Lj = (4)
for some €. These approximations are Taylor-series or finite-difference approximations to
the gradient of the function #(P). Four choices of € are noteworthy:

negative jackknife : €= —1/(n — 1)
influence function: € — 0 (5)
positive jackknife : e=1/(n+1)

butcher knife : € = n /2

The first three are the negative jackknife, influence function (or infinitesimal jackknife),
and positive jackknife approximations of (Efron (1982)), the fourth is the butcher knife of
(Hesterberg (1995)).

The infinitesimal jackknife (influence function) requires analytical calculations, or nu-
merical approximation by a small value of €. Using a numerical approximation, or using any
of the other methods, requires an additional n function evaluations. It is this expense that
the new methods described below are intended to avoid.

The two jackknives can be calculated using software that does not explicitly support
weights, by deleting each observation in turn, or repeating an observation twice. The butcher
knife can also be approximated in this manner, by repeating an each observation in turn &
times, with & = round(1 + 1_‘1//5\/5), this corresponds to e = (k — 1)/(n + k).

The butcher knife can be used for some non-smooth statistics such as the median for
which the other methods fail.

3 Regression Methods

We turn now to regression methods, which may be used to obtain linear approximations
for any statistic, even one not defined for weighted samples. They also do not require n
extra function evaluations; however, depending on the method, they may require that B be
substantially larger than it would otherwise be.

Regression methods utilize existing bootstrap samples to obtain linear approximations.
Let M, ; be the number of times original observation z; is included in the b’th bootstrap
sample and let Py, = M, /n. A linear regression without an intercept of the form

0y = > B;Py; + residual,, o
j=1

yields coefficients which are centered to obtain the linear approximation
Li=8-8 (7)
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where 3 = (1/n) ¥, ;. The intercept must be omitted because otherwise the regression
would be singular, because 3 7_; P = 1. This linear approximation was obtained by (Efron
(1990)).

Hesterberg (1995) generalizes this procedure by obtaining the regression approximation
as above, calculating the corresponding linear approximation L* (right side of 3), smoothing
L* (as the response variable) against §* to estimate a smooth nonlinear transformation ),
and then performing another regression using (%) in place of 6*:

D(6)) = > Bij":j + residualy, (8)
7j=1

The procedure is motivated by the ACE algorithm (Breiman and Friedman (1985)). This
gives more accurate coefficients in some problems — using the linear transformation reduces
the residual standard deviation, and hence provides linear regression coefficients with smaller
variance for a given sample size B.

If the bootstrap samples were obtained using importance sampling, then (6) and (7) are
replaced by weighted regressions.

Both the regression and ACE procedures utilize B observations to estimate n regression
coefficients. To do this accurately requires that B be substantially larger than n. This makes
these procedures impractical in many situations, involving large or even moderate samples.
For example, B could be as small as 60 when using bootstrap tilting to obtain confidence
intervals (Hesterberg (1997)).

3.1 Regression against a design matrix

We describe in this section a procedure using regression on fewer degrees of freedom.

To motivate the procedure, consider the case where there are duplicate values among the
original n data points, e.g. if the underlying distribution is discrete. Then the corresponding
values of L; should also be duplicated, and fewer than n unique regression coefficients would
be needed. Or, suppose that observations are not exactly duplicated, but are similar; then
the corresponding regression coefficients should be similar; this knowledge could be used to
reduce the Monte Carlo variability in those observations.

We implement those thoughts using a “design-based” method for obtaining linear ap-
proximations. Let h be a “design transformation,” such that h(x;) is a p-dimensional vector,
usually with p < n, and let by =n 13", h(xy;) = iy Py;h(z;) be the vector containing
the average of the design transformations for all observations in a bootstrap sample b. A
regression of the form

p
0; = > ﬂjﬁz,j + residual, 9)

J=1
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Figure 2: Approximations to influence function values, based on the positive jackknife (left
panel) and a linear regression with low degrees of freedom.

yields regression coefficients 3;, j = 1,...,p. The first element of h(x;) would typically be
identically 1, in which case [3; is an intercept term. The vector L is then determined by:

L= B, (10)

=1

Note that this vector must in general be linearly transformed before it can be used in a
(non-generalized) linear transformation.

Optionally, §* can be replaced with ¢ (#*) in (9), thus combining the ACE algorithm idea
with this design matrix method.

An example is shown in Figure 2. The data used here are provided by Dr. Michael
LeBlanc of the Fred Hutchinson Cancer Research Center, consisting of survival times of 158
patients in a head and neck cancer study; 18 of the observations were right-censored. The
control group received surgery and radiotherapy, while the treatment group also received
chemotherapy. The statistic 6 is the treatment coefficient in a Cox proportional hazards
regression model. The left panel for the figure uses the positive jackknife, while the right
panel uses a regression against a design transformation with with p = 12 terms (including
the intercept).

An alternative procedure, based on clustering the data and regression against the cluster
proportions, did not work as well. The estimates of L; are constant within each cluster,
whereas the linear regression procedure allows for linear (or quadratic, etc.) relationships
within clusters.



3.2 Choice of design matrix

The design transformation should be chosen so that 0r = Z§:1 ﬂjﬁ;, for some unknown
coefficients ;. It should include an intercept, dummy variables (for discrete components of
x;), continuous variables and/or polynomial, b-spline, or other nonlinear transformations of
the continuous variables, and possibly interaction terms. In this example we split the data
into four groups based on treatment and censoring status, used separate intercepts for each
group, used separate slopes for the two censored groups, and used linear b-splines with two
interior knots for the two non-censored groups, for 12 total degrees of freedom. The result
is a slightly less accurate—the correlation between 0% and the regression approximation
> L]p] is 0.989, while it is 0.993 for the jackknife linear approximation 37, L]p] —but
saves 158 function evaluations. Adding additional terms results in higher correlation —
correlation .9923 with p = 20 and .9928 with p = 26 (the additional terms were added by
increasing the number of knots used for b-splines; the knot placements were not optimized).

Choosing the design transformation is an art, similar to that of variable selection in
ordinary linear regression. Many of the same techniques can be utilized, such as ¢- and F-
statistics for determining whether the addition of terms results in a substantial reduction in
residual variance, and stepwise regression. Techniques borrowed from Multivariate Adaptive
Regression Splines (Friedman (1991)) should be particularly suitable.

There is less need to obtain a parsimonious model here than in most linear regression
applications, because interpretability of results is not necessary, and because the p coeffi-
cients are not used directly, but only indirectly after a linear transformation to the vector L.
As long as B is much larger than p, adding additional terms causes little harm. Simulation
results, in Tables 1-5, support the general rule that it is critical to include certain terms
(which vary by problem), and that adding additional terms does not hurt. Those simula-
tions are based on the correlation of the linear approximations L* with t(#*); additional
simulations should be done that focus on the variability of the elements of L.

Our rule of thumb is to require that B > 50 + 3p, but more work should be done to
quantify the effect of different values of B and p; we suspect that say B > 50 + p may
be adequate. If p = n and all columns of the design matrix are linearly independent, the
procedure gives the same results as the earlier regression procedure.

It should be straightforward to create a “tail-specific” version of the design-based regres-
sion procedure, based on the tail-specific regression procedure of (Hesterberg (1995)), but
we have not done so.

Summary

The key contribution of this report is the development of a “design-based linear approxi-
mation” method for obtaining linear approximations in bootstrap situations cheaply. The
procedure does not require additional function evaluations, in contrast to “knife” methods,



Table 1: Average Adjusted R? of Transformed Replicates ¢)(0*) with Linear Approximation
L* (Normal Data, Statistic: Two-sample Correlation)

Linear Approximation Method
N B |JACK REG ACE DM-1 DM-2 DM-3 DMA-1 DMA-2 DMA-3

10 50 077 0.7 078 030 0.78 0.26 0.78
100 0.74 076 0.77 0.28  0.76 0.26 0.77
200 073 0.75 0.76 027 0.76 0.26 0.76
400 074 0.76 0.76 0.27  0.76 0.26 0.76

80 100 097 096 096 0.07 097 097 0.04 0.97 0.97
200 097 097 097 006 097 097 0.05 0.97 0.97
400 097 097 097 0.05 097 097 0.05 0.97 0.97

The methods used are positive jackknife, regression, ACE, design matrix, and design matrix with
ACE. The data (x,y) are jointly normal with p = 0.5, with sample size 10 or 80. For each sample
size, 100 random data sets are generated; from each data set, four sets of bootstrap samples are
generated, with sizes B = 50, 100, 200, and 400 (the n = 80, B = 50 case was omitted). The linear
approximation methods are applied to the bootstrap samples, and corresponding L* computed.
Then the best-fit zﬁ is found for each method, using smoothing splines with 4 degrees of freedom,
and the squared correlation (R?) with L* is recorded. The R? values are adjusted according to
degrees of freedom (DF) as R2 =1 — (1 — R?)- (B —1)/(B — p), where p is 1 for jackknife, n
for regression, n + 3 for ACE (3 is the nonlinear DF of the smoothing), & for design matrix, and
k + 3 for design matrix with ACE (k is the number of columns of the design matrix, including the
intercept). Each of the cells of the table is an average of 100 R? values.

Each of the design matrices has an intercept term. In addition, the design matrix for DM-1 and
DMA-1 has (x,y), for DM-2 and DMA-2 has (x,y,x2,xy,y?), and for DM-3 and DMA-3 has
(x,y,x2,xy,y?,x3,x2y, xy?2,y3). Including the intercept, this last design matrix has 10 columns,
and thus gives an identical fit to that of the regression method when n = 10. Thus, these redundant
results are omitted from the table. Since the correlation coefficient can be written in linear and
quadratic terms of x and y, a priori we expected the second design matrix to give the best fit,
which indeed happened. We also expected that the first design matrix would give poor results due
to underfitting, and that the third design matrix would not improve on the second but would also
not do (much) worse; the results match these expectations.



Table 2: Average Adjusted R? of Transformed Replicates ¢)(0*) with Linear Approximation
L* (Normal Data, Statistic: One-sample Variance)

Linear Approximation Method

N B |JACK REG ACE DM-1 DM-2 DM-3 DMA-1 DMA-2 DMA-3

10 50 087 087 086 0.23 0.87 0.87 0.18 0.86 0.86
100 0.8 0.8 0.85 0.20 0.86 0.86 0.18 0.86 0.86
200 0.85 085 085 0.19 085 0.85 0.18 0.85 0.85
400 0.8 0.8 085 0.19 085 0.85 0.18 0.85 0.85

8 100 099 099 099 0.06 099 0.99 0.04 0.99 0.99
200 099 099 099 0.06 099 0.99 0.04 0.99 0.99
400 099 099 099 0.04 099 0.99 0.04 0.99 0.99

The data (x) are univariate standard normal. In addition to the intercept term, the design matrix
for DM-1 and DMA-1 has (x), for DM-2 and DMA-2 has (x,x2), and for DM-3 and DMA-3
has (x,x2,x3). Like the correlation coefficient, the sample variance is quadratic, so a priori we
expected the second design matrix to give the best fit, which indeed happened. Similarly, the first
design matrix gives poor results due to underfitting and the third design matrix does not improve
on the second. For other details on this simulation, see Table 1.

Table 3: Average Adjusted R? of Transformed Replicates ¢)(0*) with Linear Approximation
L* (Exponential Data, Statistic: One-sample Variance)

Linear Approximation Method

N B |JACK REG ACE DM-1 DM-2 DM-3 DMA-1 DMA-2 DMA-3

10 50 0.898 0.894 0.890 0.511 0.899 0.898  0.479 0.893 0.893
100 0.893 0.892 0.892 0.490 0.894 0.894 0.474 0.892 0.893
200 0.899 0.898 0.899 0.493 0.899 0.899 0.485 0.899 0.899
400 0.897 0.896 0.897 0.490 0.897 0.897  0.486 0.897 0.898

80 100 0.996 0.994 0.994 0.561 0.996 0.996  0.547 0.996 0.996
200 0.996 0.995 0.995 0.550 0.996 0.996 0.543 0.996 0.996
400 0.995 0.995 0.995 0.554 0.995 0.995 0.551 0.995 0.995

The data are exponential(1). See Table 2 for further details.



Table 4: Average Adjusted R? of Transformed Replicates ¢)(0*) with Linear Approximation
L* (Normal Data, Statistic: Ratio of Means)

Linear Approximation Method

N B |JACK REG ACE DM-1 DM-2 DMA-1 DMA-2

10 50 0.9976 0.9958 0.9981 0.9986 0.9971 0.9989  0.9985
100 0.9974 0.9965 0.9982 0.9985 0.9972 0.9987  0.9984
200 0.9972 0.9972 0.9983 0.9984 0.9974 0.9986  0.9984
400 0.9972 0.9974 0.9984 0.9984 0.9976 0.9985  0.9984

80 100 0.9998 0.9980 0.9982 0.9998 0.9997 0.9998  0.9998
200 0.9998 0.9989 0.9994 0.9998 0.9997 0.9998  0.9998
400 0.9998 0.9993 0.9997 0.9998 0.9998 0.9998  0.9998

The data (x,y) are independently normal with mean vector (3, 9); each has unit variance. In
addition to the intercept term, the design matrix for DM-1 and DMA-1 has (x,y) and for DM-2
and DMA-2 has (x,y,x2,xy,y2). We expected the quadratic design matrix not to improve on the
first, and that was the result. For other details on this simulation, see Table 1.

Table 5: Average Adjusted R? of Transformed Replicates ¢)(0*) with Linear Approximation
L* (Exponential Data, Statistic: Ratio of Means)

Linear Approximation Method

N B |JACK REG ACE DM-1 DM-2 DMA-1 DMA-2

10 50 0.977 0.960 0.980 0.984 0.971 0.988 0.984
100 0.974 0.966 0.981 0.983 0.972 0.985 0.983
200 0.971 0.970 0.981 0.982 0.974 0.983 0.982
400 0.970 0.972 0.980 0.980 0.973  0.982 0.981

80 100 0.998 0.983 0.985 0.998 0.997  0.998 0.998
200 0.998 0.990 0.995 0.998 0.998  0.998 0.998
400  0.998 0.994 0.997 0.998 0.998  0.998 0.998

The data (x,y) are independent exponentials plus a constant vector (0,2). See Table 4 for further
details.
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which require n function evaluations, which is expensive if n is large and/or 6 is expensive
to compute. It does not require that B be much larger than n. It is suitable for non-smooth
functions, such as the sample median, unlike most knife methods. It does not require an-
alytical calculations by the user, and can be implemented in general-purpose bootstrap
software.

The new method does require that the user specify a design matrix, or that an automated
procedure such as a variation of stepwise regression be used to select the design matrix.

The method produces accurate linear approximations in a variety of test problems.

We have written an S-PLUS function resamp.get.L that takes as input a bootstrap
object and uses any of the methods described above to compute L; for the design matrix
method the user must also supply the design matrix.

Further study is needed to quantify the effect of choosing the design matrix adaptively,
to quantify how large B should be in order to obtain desired levels of accuracy, to study
the variability of individual elements of L as a function of degrees of freedom in the design
matrix, and to obtain a “tail-specific” version of the method.
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