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Linear Approximations for Functional Statistics in Large�Sample

Applications

T� C� Hesterberg and S� J� Ellis

Abstract

We discuss methods for obtaining linear approximations to a functional statistic� with par�
ticular application to bootstrapping medium to large datasets� Existing methods use analyt�
ical approximations� �nite�di�erence derivatives� or linear regression using bootstrap results�
Finite�di�erence methods require an additional n evaluations of a functional statistic where
n is the number of observations in the data set�� and regression methods require that that
the number of bootstrap samples B is substantially larger than n� We develop regression�
type methods that allow B to be much smaller� and that require no dedicated bootstrap
samples� The method uses a prespeci�ed or adaptively chosen design matrix�

Key Words� Bootstrap tilting� concomitants of order statistics� importance sampling� jack�
knife� strati�ed sampling� variance reduction�

� Introduction

We begin with a short introduction to the bootstrap� then discuss new methods in subsequent
sections� for a more complete introduction to the bootstrap see Efron and Tibshirani ������
The original data are X � X�� X�� � � � � Xn�� a sample from an unknown distribution which
may be multivariate�� Let � � �F � be a real�valued functional parameter of the distribution�
such as its mean� interquartile range� or slope of a regression line� and �� � � �F � the value
estimated from the data� The sampling distribution of ��

Ga� � PF �� � a� ��

is used for statistical inference�
In simple problems the sampling distribution can be approximated using methods such

as the central limit theorem and the substitution of sample moments such as x and s into
formulas obtained by probability theory� This may not be su�ciently accurate or even
possible in many real� complex situations�

The bootstrap principle is to estimate some aspect of G� such as its standard deviation�
by replacing F with an estimate �F � We focus on the nonparametric bootstrap� for which
�F is the empirical distribution� Let X � � X�

�
� X�

�
� � � � � X�

n� be a a bootstrap sample of size
n from �F � denote the corresponding empirical distribution �F �� and write ��� � � �F ��� In
simple problems the bootstrap distribution P �F 

��� � a� can be calculated or approximated

�



analytically� but it is usually approximated by Monte Carlo simulation�for some number
B of bootstrap samples� sample X �

b for b � �� � � � � B with replacement from X � then let

�Ga� � B��
BX

b��

I���b � a�� ��

The focus of this report is on computationally�e�cient methods for obtaining gener�
alized� linear approximations for functional statistics� Such approximations are used for
a number of applications � standard errors� the acceleration constant for the bootstrap
BC�a interval Efron ���	��� importance sampling in bootstrap applications Johns ������
Davison and Hinkley ������� concomitants of order statistics for bootstrap variance reduc�
tion Efron ������ Do and Hall ������� control variates and post�strati�cation Hesterberg
���
�� Hesterberg ������� bootstrap tilting inferences Efron ������ DiCiccio and Romano
������ Hesterberg ���	�� Hesterberg ������� and bootstrap tilting diagnostics Hesterberg
���	�� Hesterberg �������

A �generalized linear approximation� to ��� is determined by a vector L of length n� with
elements Lj corresponding to each of the original observations xj� such that

��X ���
�
� L� �

nX

j��

LjP
�
j ��

for some smooth monotone increasing function �� where P �
j �Mj�n and Mj is the number

of times xj is included in X �� The special case where �T �� � T � � T X � is a standard
linear approximation�

For example� Figure � shows a generalized linear approximation for bootstrapping the
sample standard deviation n��

P
x�i�x

�������� The divisor is n rather than n�� so that the
statistic is functional�� The curvature could be removed in this case by the transformation
��� � ���

In Section � we discuss �knife� methods � the jackknife and related methods � for
obtaining linear approximations� In Section � we discuss regression methods� including the
new �design�based� regression method in Section ����

� Knife Methods

In this section we review a number of methods based on functional derivatives�
We restrict consideration to distributions with support on the observed data� Then we

may describe a distribution in terms of the probabilities p � p�� � � � pn� assigned to the
original observations� �F corresponds to p� � ��n� � � � � ��n�� Let �p� be the corresponding
parameter estimate which depends implicitly on X ��
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Figure �� Generalized Linear Approximation for bootstrapping the sample standard devia�
tion� The data are a random sample of size n � �� from a standard normal distribution�
B � ����� and the linear approximation is obtained by the in�nitesimal jackknife empirical
in�uence function��
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The �knife� approximations in this section are of the form

Lj �
�P� � ��j �Pc��� �P��

�
��

for some �� These approximations are Taylor�series or �nite�di�erence approximations to
the gradient of the function �P�� Four choices of � are noteworthy�

negative jackknife � � � ���n� ��
in�uence function � �� �
positive jackknife � � � ��n� ��

butcher knife � � � n����


�

The �rst three are the negative jackknife� in�uence function or in�nitesimal jackknife��
and positive jackknife approximations of Efron ������� the fourth is the butcher knife of
Hesterberg ���
���

The in�nitesimal jackknife in�uence function� requires analytical calculations� or nu�
merical approximation by a small value of �� Using a numerical approximation� or using any
of the other methods� requires an additional n function evaluations� It is this expense that
the new methods described below are intended to avoid�

The two jackknives can be calculated using software that does not explicitly support
weights� by deleting each observation in turn� or repeating an observation twice� The butcher
knife can also be approximated in this manner� by repeating an each observation in turn k
times� with k � round� �

p
n

����
p
n
�� this corresponds to � � k � ���n� k��

The butcher knife can be used for some non�smooth statistics such as the median for
which the other methods fail�

� Regression Methods

We turn now to regression methods� which may be used to obtain linear approximations
for any statistic� even one not de�ned for weighted samples� They also do not require n
extra function evaluations� however� depending on the method� they may require that B be
substantially larger than it would otherwise be�

Regression methods utilize existing bootstrap samples to obtain linear approximations�
Let Mb�j be the number of times original observation xj is included in the b�th bootstrap
sample and let P �

b�j � Mb�j�n� A linear regression without an intercept of the form

���b �
nX

j��

��jP
�
b�j � residualb� ��

yields coe�cients which are centered to obtain the linear approximation

�Lj � ��j � �� 	�

�



where �� � ��n�
Pn

i��
��i� The intercept must be omitted because otherwise the regression

would be singular� because
Pn

j�� P
�
j � �� This linear approximation was obtained by Efron

�������
Hesterberg ���
� generalizes this procedure by obtaining the regression approximation

as above� calculating the corresponding linear approximation L� right side of ��� smoothing
L� as the response variable� against ��� to estimate a smooth nonlinear transformation ���
and then performing another regression using ������ in place of ����

�����b � �
nX

j��

��jP
�
b�j � residualb� ��

The procedure is motivated by the ACE algorithm Breiman and Friedman ���
��� This
gives more accurate coe�cients in some problems � using the linear transformation reduces
the residual standard deviation� and hence provides linear regression coe�cients with smaller
variance for a given sample size B�

If the bootstrap samples were obtained using importance sampling� then �� and 	� are
replaced by weighted regressions�

Both the regression and ACE procedures utilize B observations to estimate n regression
coe�cients� To do this accurately requires that B be substantially larger than n� This makes
these procedures impractical in many situations� involving large or even moderate samples�
For example� B could be as small as �� when using bootstrap tilting to obtain con�dence
intervals Hesterberg ���	���

��� Regression against a design matrix

We describe in this section a procedure using regression on fewer degrees of freedom�
To motivate the procedure� consider the case where there are duplicate values among the

original n data points� e�g� if the underlying distribution is discrete� Then the corresponding
values of Lj should also be duplicated� and fewer than n unique regression coe�cients would
be needed� Or� suppose that observations are not exactly duplicated� but are similar� then
the corresponding regression coe�cients should be similar� this knowledge could be used to
reduce the Monte Carlo variability in those observations�

We implement those thoughts using a �design�based� method for obtaining linear ap�
proximations� Let h be a �design transformation�� such that hxi� is a p�dimensional vector�
usually with p� n� and let h

�
b � n��

Pn
i�� hx

�
b�i� �

Pn
i�� P

�
b�ihxi� be the vector containing

the average of the design transformations for all observations in a bootstrap sample b� A
regression of the form

���b �
pX

j��

�jh
�
b�j � residualb ��
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Figure �� Approximations to in�uence function values� based on the positive jackknife left
panel� and a linear regression with low degrees of freedom�

yields regression coe�cients �j� j � �� � � � � p� The �rst element of hxj� would typically be
identically �� in which case �� is an intercept term� The vector L is then determined by�

Li �
pX

j��

�jhxi�j� ���

Note that this vector must in general be linearly transformed before it can be used in a
non�generalized� linear transformation�

Optionally� ��� can be replaced with ����� in ��� thus combining the ACE algorithm idea
with this design matrix method�

An example is shown in Figure �� The data used here are provided by Dr� Michael
LeBlanc of the Fred Hutchinson Cancer Research Center� consisting of survival times of �
�
patients in a head and neck cancer study� �� of the observations were right�censored� The
control group received surgery and radiotherapy� while the treatment group also received
chemotherapy� The statistic � is the treatment coe�cient in a Cox proportional hazards
regression model� The left panel for the �gure uses the positive jackknife� while the right
panel uses a regression against a design transformation with with p � �� terms including
the intercept��

An alternative procedure� based on clustering the data and regression against the cluster
proportions� did not work as well� The estimates of Li are constant within each cluster�
whereas the linear regression procedure allows for linear or quadratic� etc�� relationships
within clusters�

�



��� Choice of design matrix

The design transformation should be chosen so that ���
�
�
Pp

j�� �jh
�
j � for some unknown

coe�cients �j� It should include an intercept� dummy variables for discrete components of
xj�� continuous variables and�or polynomial� b�spline� or other nonlinear transformations of
the continuous variables� and possibly interaction terms� In this example we split the data
into four groups based on treatment and censoring status� used separate intercepts for each
group� used separate slopes for the two censored groups� and used linear b�splines with two
interior knots for the two non�censored groups� for �� total degrees of freedom� The result
is a slightly less accurate�the correlation between ��� and the regression approximationPn

j��
�Ljp

�
j is ������ while it is ����� for the jackknife linear approximation

Pn
j��

�Ljp
�
j�but

saves �
� function evaluations� Adding additional terms results in higher correlation �
correlation ����� with p � �� and ����� with p � �� the additional terms were added by
increasing the number of knots used for b�splines� the knot placements were not optimized��

Choosing the design transformation is an art� similar to that of variable selection in
ordinary linear regression� Many of the same techniques can be utilized� such as t� and F �
statistics for determining whether the addition of terms results in a substantial reduction in
residual variance� and stepwise regression� Techniques borrowed from Multivariate Adaptive
Regression Splines Friedman ������ should be particularly suitable�

There is less need to obtain a parsimonious model here than in most linear regression
applications� because interpretability of results is not necessary� and because the p coe��
cients are not used directly� but only indirectly after a linear transformation to the vector L�
As long as B is much larger than p� adding additional terms causes little harm� Simulation
results� in Tables ��
� support the general rule that it is critical to include certain terms
which vary by problem�� and that adding additional terms does not hurt� Those simula�
tions are based on the correlation of the linear approximations L� with ������� additional
simulations should be done that focus on the variability of the elements of L�

Our rule of thumb is to require that B � 
� � �p� but more work should be done to
quantify the e�ect of di�erent values of B and p� we suspect that say B � 
� � p may
be adequate� If p � n and all columns of the design matrix are linearly independent� the
procedure gives the same results as the earlier regression procedure�

It should be straightforward to create a �tail�speci�c� version of the design�based regres�
sion procedure� based on the tail�speci�c regression procedure of Hesterberg ���
��� but
we have not done so�

Summary

The key contribution of this report is the development of a �design�based linear approxi�
mation� method for obtaining linear approximations in bootstrap situations cheaply� The
procedure does not require additional function evaluations� in contrast to �knife� methods�

	



Table �� Average Adjusted R� of Transformed Replicates ������ with Linear Approximation
L� Normal Data� Statistic� Two�sample Correlation�

Linear Approximation Method
N B JACK REG ACE DM�� DM�� DM�� DMA�� DMA�� DMA��
�� 
� ��		 ��		 ��	� ���� ��	� ���� ��	�

��� ��	� ��	� ��		 ���� ��	� ���� ��		
��� ��	� ��	
 ��	� ���	 ��	� ���� ��	�
��� ��	� ��	� ��	� ���	 ��	� ���� ��	�

�� ��� ���	 ���� ���� ���	 ���	 ���	 ���� ���	 ���	
��� ���	 ���	 ���	 ���� ���	 ���	 ���
 ���	 ���	
��� ���	 ���	 ���	 ���
 ���	 ���	 ���
 ���	 ���	

The methods used are positive jackknife� regression� ACE� design matrix� and design matrix with

ACE� The data �x�y� are jointly normal with � � ���� with sample size 	� or 
�� For each sample
size� 	�� random data sets are generated� from each data set� four sets of bootstrap samples are

generated� with sizes B � ��� 	��� ���� and �� �the n � 
�� B � �� case was omitted�� The linear

approximation methods are applied to the bootstrap samples� and corresponding L� computed�

Then the best��t �� is found for each method� using smoothing splines with  degrees of freedom�

and the squared correlation �R�� with L� is recorded� The R� values are adjusted according to

degrees of freedom �DF� as R�
a � 	 � �	 � R�� � �B � 	���B � p�� where p is 	 for jackknife� n

for regression� n � � for ACE �� is the nonlinear DF of the smoothing�� k for design matrix� and

k�� for design matrix with ACE �k is the number of columns of the design matrix� including the

intercept�� Each of the cells of the table is an average of 	�� R�
a values�

Each of the design matrices has an intercept term� In addition� the design matrix for DM�	 and

DMA�	 has �x�y�� for DM�� and DMA�� has �x�y�x��xy�y��� and for DM�� and DMA�� has
�x�y�x��xy�y��x��x�y�xy��y��� Including the intercept� this last design matrix has 	� columns�

and thus gives an identical �t to that of the regression method when n � 	�� Thus� these redundant

results are omitted from the table� Since the correlation coe�cient can be written in linear and

quadratic terms of x and y� a priori we expected the second design matrix to give the best �t�

which indeed happened� We also expected that the �rst design matrix would give poor results due

to under�tting� and that the third design matrix would not improve on the second but would also

not do �much� worse� the results match these expectations�

�



Table �� Average Adjusted R� of Transformed Replicates ������ with Linear Approximation
L� Normal Data� Statistic� One�sample Variance�

Linear Approximation Method
N B JACK REG ACE DM�� DM�� DM�� DMA�� DMA�� DMA��
�� 
� ���	 ���	 ���� ���� ���	 ���	 ���� ���� ����

��� ���� ���� ���
 ���� ���� ���� ���� ���� ����
��� ���
 ���
 ���
 ���� ���
 ���
 ���� ���
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�� ��� ���� ���� ���� ���� ���� ���� ���� ���� ����
��� ���� ���� ���� ���� ���� ���� ���� ���� ����
��� ���� ���� ���� ���� ���� ���� ���� ���� ����

The data �x� are univariate standard normal� In addition to the intercept term� the design matrix

for DM�	 and DMA�	 has �x�� for DM�� and DMA�� has �x�x��� and for DM�� and DMA��

has �x�x��x��� Like the correlation coe�cient� the sample variance is quadratic� so a priori we

expected the second design matrix to give the best �t� which indeed happened� Similarly� the �rst

design matrix gives poor results due to under�tting and the third design matrix does not improve
on the second� For other details on this simulation� see Table 	�

Table �� Average Adjusted R� of Transformed Replicates ������ with Linear Approximation
L� Exponential Data� Statistic� One�sample Variance�

Linear Approximation Method
N B JACK REG ACE DM�� DM�� DM�� DMA�� DMA�� DMA��
�� 
� ����� ����� ����� ��
�� ����� ����� ���	� ����� �����
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The data are exponential�	�� See Table � for further details�

�



Table �� Average Adjusted R� of Transformed Replicates ������ with Linear Approximation
L� Normal Data� Statistic� Ratio of Means�

Linear Approximation Method
N B JACK REG ACE DM�� DM�� DMA�� DMA��
�� 
� ����	� ����
� ������ ������ ����	� ������ �����
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The data �x�y� are independently normal with mean vector ��� ��� each has unit variance� In

addition to the intercept term� the design matrix for DM�	 and DMA�	 has �x�y� and for DM��

and DMA�� has �x�y�x��xy�y��� We expected the quadratic design matrix not to improve on the

�rst� and that was the result� For other details on this simulation� see Table 	�

Table 
� Average Adjusted R� of Transformed Replicates ������ with Linear Approximation
L� Exponential Data� Statistic� Ratio of Means�

Linear Approximation Method
N B JACK REG ACE DM�� DM�� DMA�� DMA��
�� 
� ���		 ����� ����� ����� ���	� ����� �����
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The data �x�y� are independent exponentials plus a constant vector ������ See Table  for further

details�

��



which require n function evaluations� which is expensive if n is large and�or � is expensive
to compute� It does not require that B be much larger than n� It is suitable for non�smooth
functions� such as the sample median� unlike most knife methods� It does not require an�
alytical calculations by the user� and can be implemented in general�purpose bootstrap
software�

The new method does require that the user specify a design matrix� or that an automated
procedure such as a variation of stepwise regression be used to select the design matrix�

The method produces accurate linear approximations in a variety of test problems�
We have written an S�PLUS function resamp�get�L that takes as input a bootstrap

object and uses any of the methods described above to compute L� for the design matrix
method the user must also supply the design matrix�

Further study is needed to quantify the e�ect of choosing the design matrix adaptively�
to quantify how large B should be in order to obtain desired levels of accuracy� to study
the variability of individual elements of L as a function of degrees of freedom in the design
matrix� and to obtain a �tail�speci�c� version of the method�
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